Personal tools
You are here: Home 3D Printing
« June 2017 »
June
SuMoTuWeThFrSa
123
45678910
11121314151617
18192021222324
252627282930
Log in


Forgot your password?
 

3D Printing

3D (Three-Dimensional) Printing is a unique form of rapid prototyping, and more recently of actual manufacturing. Here, a 3D object is created by layering and connecting successive cross-sections of plastics, metals, or other material.

3D Printer

We have a dual-extruder 3D printer of Type Ultimaker 3. The printer is located in a locked cabinet on the 2nd floor of Schreiber (near the staircase).

  • The type of filament installed on head 1 is PLA; its diameter is 1.75 mm. You need to configure Cura accordingly. This filament is not recognized by the printer, so the printer will not verify the correctness of your settings.
  • The type of filament installed on head 2 is PVA. It is recognized by the printer.

Materials

The printer supports three types of filaments as follows:

  1. ABS
  2. PLA
  3. PVAa water-soluble synthetic polymer best used for support material.
  4. CPEa chemical resistant and tough material that demonstrates good dimensional stability.
  5. Nylona durable and flexible material with high strength-to-weight ratio and low friction, and corrosion resistance.

Currently, a PLA filament is mounted on the the 1st extruder and a PVA filament is mounted on the the 2nd extruder.

If you want to print with two materials, the following combinations of Ultimaker materials are officially supported:

  • PLA - PVA
  • Nylon - PVA
  • PLA - PLA
  • ABS - ABS
  • CPE - CPE

Specification

See Ultimaker 3 specification.

Printing

First, you need to create a digital model. A list of notable 3D modeling tools can be found here; a comprehensive list of modeling software tools can be found here. If you are a novice user and don't have a preferable modelling tool, we recommend Tinkercad, Onshape, or Sketchup Make

Once you have a model, you will need to generate the "program" that consists of instructions to print it. Our 3D-printer (like most 3D printers) accepts programs written in G-Code.

A G-Code program can be fed directly to the printer from a disk-on-key.

Follow the procedure below when you use this printer.

  1. Prepare a file in the Gcode format that contains the instructions to the printer to print the object, using Cura.
    • Cura should give you an estimate of how long the print process will last.
  2. Copy the file to a disk-on-key.
  3. Enter the cabinet where the printer is located.
  4. Insert the disk-on-key into the USB slot in the printer.
  5. Coat the tray with glue, using a glue stick, on the area where the 1st layer will be printed.
    • If you print a prime tower (which is recommended when you print with PVA support) don't forget to spread glue also on the area underneath the prime tower.
  6. Start the print.
  7. You may leave the premises, but check on the progress every once in a while.
    • The printer is equipped with a camera. Once we connect the printer to the network it will be possible to remotely monitor the printer.
  8. Come back after the print tray has cooled down, and remove the printed object from it.
  9. You may use a sharp flat (Japanese) knife to disconnect the printed object from the tray.
  10. Remember to remove the disk-on-key, leave the glue stick near the printer, leave the desk clean, and unlock the cabinet on your way out.
Document Actions