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Basics, reminder



Assembly by disassembly

APartitioning, first the input assembhj into subassemblies and then,
recursively, thegenerated subassemblies that are not individpatts

Almplemented by two procedures:

APartition: takes the description of an assemiggs input and
generates twasubassemblies,&nd S, along with gpath p suclthat
moving $ along p separates from S. Whenever such subassemblies
and direction do not exist, the procedure returns failure

ADisassembleappliespartition to the given assembland,
recursively, tahe generated subassemblies



Categoriesof motion

AA motion step translates a body along a single directioy some
distanceq, while rotatingit at constant rata aboutan axiathat is

fixedrelativeto the body

AA one-step motionconsists of a single motion stepwrichq is
arbitrarily large

Alf the rotation rateis null (I.e., the body has fixed orientation), the
motion Is aone-step translation

AA multistep motion is the concatenation of several motion steps, in
which the last stefhas arbitrarily large

AAninfinitesimal motion consists of a single motion stepvirnichq is
arbitrarily small



The motion space approach



A general framework

AA general approach to designing the procedpagtition

AThe procedure needs to select a subset S out of A (exponentially
many options) and a pathaong which we separate S from &

AThe crux of the framework is the observation thia¢ number of
degrees of freedom of the patl the key factor of efficiency

AA suite of polynomialime solutions to the partitioning problem and
hence to assembly planning



Motion space (IMspace)

Athe space of parametric representations of all allowable motions
partitioning operationsevery point in Mspace uniquely defines a
path of thesubassembly movelly anoperation

Athe dimensionof the motion space is theinimal numberof
parameters required to define a path with a fixed startpant

Athe motion space must be parameterized in such away that the
representation ofa motion is independent of the subassembly that
will eventually be movedaway

Aall the coordinate frames coincide with a universal framehén the
parts are In their assembled configurations




M-region

AFor everyordered pair ofparts RandP in an assembly we define
their M-regionP; to be thecollectlon of points pn motion space such
that If we move Palong the path thap represents P will overlap
with B at somepoint

AForeach path gn P; we say that blocksP



Blocking graph

AGiven an assembly A made of n p&s(,P,, we associate directed
graphG(p)with every point p of motion space. The noddd5(p)are
the n partsP,,X,P, composing the assembly, aeach orderegair
<P,P> suchthat pN P; induces an arc d&(p) directedrom Rto P .We
call thls graph thellrectlonalblocklng graphior DBQG of A for patkp

[z




Nondirectional blocking graph
[WilsonLatombe'@4]

ALet] P; denote the set of all pathp such that if Pmoves alongp it
will eventually touchP, without overlap

Aln general P i 1S a superset of the boundary Bj

AThe set$ P; for alli,j~N[1,n],1 |, decompose thenotion space Into
an arrangement of cells such that the DBQ\eémains fixecbver
each cell

AThe arcs of the DBIG any cell dn this arrangement correspond
exactlyto the M-regions thatcontain c

AThe arrangement of cells thus defined, alowith the DBG of each
cell, thenon-directional blocking graphlor NDBG)




Strong connectivity

AA directedgraph isstrongly connectedf every vertex is reachable
from every other vertex

AThestrongly connected componentsf an arbitrary directed graph
form a partition into subgraphs that are themselves strongly
connected

Alt is possible to test the strong connectivity of a graph, or to find its
strongly connected components linear time

Graph with strongly connected componemsrked [Wikipedia]
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NDBG and the partition problem

AClaim: The assembly partitioning problem has a positive answer
(subassembly + pathiff there is a point p in Mspace such that
DBG(p) Is not strongly connected



The procedure partition

procedure partition($);
for every cell ¢ in the NDBG of S do:
if the DBG associated with ¢ 1s not strongly connected
then return c and a feasible partition of .5
return failure:



Motion space realization

ADefine the parameters of a partition path
AThis determines the dimension d and coordinates of thepdce
AThe shape and complexity of anggion

AThe overlay of the boundaries of the-tdgions: a edimensional
arrangement

AThe rest is (more or less) common to all realizations:

A Construct the DBG in each cell according to containment-iedibns
ACheck each DBG for strong connectivity




Exampléel: Onestep translation in the plane

AReminder I:

A Aone-step motionconsists of a single motion step in whigks arbitrarily
large

AlIf the rotation rate is null (i.e., the body has fixed orientation), the motion is a
one-steptranslation

AWhat is the Mspace?
AHow does an Megion look like?

AReminder Il

ATwo sets A and B intersect if and only if Mmkowskisum! & L. contains
the origin, wheres. is the set B reflected through tharigin

AMore generally: A(BG {t}) »n ifftn 1 G b.



Onesteptransiation, Mregion




Onesteptranslation, constructing the NDBG

AOverlay the arc®; on S: sort the endpoints of the arcs

ACompute the BDG at, says0

A* Check for strong connectivity, if not SC, report a strongly connected
component and a direction of separation and stop, else

AMove to the next cell of thdD arrangement. If contains=0, then
report failure and stop. Else update the DBG according to the vertex

you crossed, and go to



Onesteptranslation, complexity

An - # of polygonal parts
Aq ¢ maximum complexity of a single part

AThe boundary oP; can be computed in Ofjjtime for a total of
O((ng¥) time¢ needs some care

AOverlay of the darcson St results in ararrgof complexity O(8) and
takes O(Alog n) time to construct

AThe complexity of a single DBG is3émd it takes O@) time to build
it

AUpdating the graph at a crossing point takes constant time

ATotal construction time of the NDBG @(ng n + ))



Onesteptranslation, complexity, cofit

ADeciding strong connectivity for a single DBG take3)®@¢ne
ATotal running time of the disassemble procedure P(n
ATotal running time of thentire algorithm @(ng} + rP)



Amortizingstrongconnectivity tests

AOne can use the knowledge about the sequence of insertions and
deletions of edges in all the DBGs together to improve the amortized
running time of a stronggonnectivity test to O(k*9)
[KhannaMotwani-Wilson'g§]



Onesteptranslation in3-space

ASee separate set of slides



Multi-step motions



Finite set of arbitranyength multistep paths

Alf we are given the subassembly, finding a rstip path can be
carried out in polynomial time

Alf the assembly is not given but the given infinite family of paths (M
space) has fixed dimension, then the partition problem can be solved
In polynomial time

AQuestion: We are given an assembly and we have to solve the
partition problem for a finite set of arbitrarkength multistep paths;
can we solve this problem efficiently, say even for rrattp
translations in the plane?
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The Interference diagram (ID) for translations



ID, details of mulstep translation in the plane

AThe assembly is placed in a fixed location in the plane
AThe assembly and all its parts have a joint reference frame

AWe compute theMinkowskisum Pa -P, for each ordered pair of
distinct parts

ANext, we construct the arrangement of the boundaries of the
Minkowskisums

AEach valid path starts at the common origin and ends at the
unbounded cell of the arrangement

AThe DBG of the path has an edgeR) for everyPa -P, that it crosses



Example
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Suggestion for a project

ADevise an interactive graphic program to answer the partition |
problem forquery multi-step-translationspathsfor polygonal parts In
the plane. Analyze the complexity of each step.

Remarks:

AThe ID is given almost for free with CGMinkowskisums +
arrangements of segments)

AChallengel: construct an efficient version of the ID (not all details in a
Minkowskisum may be necessary)

AChallenge2: allow for tight passages in the partition paths



ID for multistep motionstfans+ro) in the plane

AWhat is the shape of an végion?
AHow can we construct it?

AGspace visualization:
https://www.youtube.com/watch?v=SBFwdR1Gk&feature=youtu.be&hdt



https://www.youtube.com/watch?v=SBFwgR4K1Gk&feature=youtu.be&hd=1

Two-step translations In the plane:
The Mspace approach

AEvery partition path consists of a segment from the origin to the point
(x,y) followed by a ray in direction-

AThe Mspace is threalimensional, with coordinates fy—

AWe will construct a superset of the boundary surfaces of the M
regions

AOnce we have the arrangement of these surfaces, the procedure is as
before



The boundary surfaces of the first step

AConsider first only paths that start at the origin and end at the poiy;(
the M-regionP;:

(X,y).Is part of the Mregion if B when moved along the segment from the
origin to ,y), intersects

o> §5»n

.
/ T

ANotice the difference between the contribution BiP to the ID (middle
figure) and to Mspace (right figure)




First segment contribution to the entire-sfpace

ANotice that the portion of the Megion ofP; due to the first segment
remains the same regardless of what the direction of the final ray Is

AWe extend the boundary curves in the plane to be the same for every

—slice
7




The boundary surfaces of the second step

AConsider now only paths that start at¥) and move to infinity along
the direction—-an—¢slice of the MregionP;:

(x,y) Is part of the—¢slice of the MregionP; if B, when moved along
the segment fromx,y) along—o inifinity, intersects?

=
ot




Second, ray, contribution to the entire§pace

AWe now have to make similar analysis for every directidnetweenO
and?2“ , and take the union of all these curves

ADistinguish between shadows that are part of tienkowskisum and
shadows that are rays and produce the respective surfaces separately

[H-Wilson'g6]



Infinitesimalseparabilityn 3-space

Leonidas Jsuibas DanHalperin HirohisaHirukawa JearClaudelLatombe Randall
H. Wilson: Polyhedral Assembly Partitioning Using Maximally Covered Cells in
Arrangements of Convex Polytopes. InCdmput Geometry Appl8(2): 179200
(1998



Preliminaries

AThe direction of a onstepmotion isgiven by a unit vector in six
dimensions

AAninfinitesimal motion separates two subassemblies dfisplaces
onerelative to the other, by an arbitrarily small amount, without
overlappingof their interiors (modified from our earlier goal of
csufficiently far away from one anoth&r

AMakes sense only if the assembly is connected



Motivation

AMuch easier than full onstep motion in3-space- M-space i$-
dimensional with complex shapes ofiiégions

Alnfinitesimal motion can be used as a hint for finite moton
continued In the same direction

ATesting if an object is interlocke&dho infinitesimal motion, then there
IS no separation with two hands



M-space

AAs before, all parts are represented in a common universal coordinate
frame U

AWe represent all possible infinitesimal motions 8h the (five
dimensional) unit sphere in stkmensional space



The kinematics of contactdb({ack box)

AAnN infinitesimal motion of angart Pi isdescribed by &ix
dimensionalectordX=(dx,dy, dz, da,db, dc):three componentsfor
translationandthree componentsfor rotation

ALet v bea vertexof P. The motion describetly dXcauses v to
undergo atranslatlonq,dx, where], iIsa constant3x6 Jacobian matrix:
each columrof J, gives the translation v experiencdse to a unit
motion of P in the corresponding parametef dX

AAssumahat P andP arein contact such that theertex vof B s
contained inthe face f ofB. Letn; be the outgoing normal vectao f
Themotion dXcauses Vv to penetratevf/hen n.JdX< O, to break the
contactwith f (>0), slide in f (6)



The kinematics aontacts, cord

ALet Pand P be two parts in contact such that a
face f of one and a faagof the pother are
overlapping

ALetui be the vertices of the convex hull ofd

AClaim: The set of allowable motions for this contact
are the intersection of the closed hapaces
n,JdxX O




The critical surfaces of the-&fpace

AFor each vertexi of the convex hull of the intersection of two parts,
the equationnJ;dX O definesa fivedimensional hyperplane in the
sixdimensional spacef infinitesimalmotions, which partitionss,

Into two open halfspheres and a greaitrcle

AThese inducan arrangement of cells of dimensiodd.,2,3,4,%n S.
The DBGs fixed over each sudatell

AAfter constructing the NDBGI) arrg+ DBGS), the rest is as before



Infinitesimal motion Ir8-space, complexity

An - # of polygonal parts

ATwo faces with complexity f and g can havégOatersections but only
O(+g) vertices on the boundary of thevexhull of the intersection

AKc # of ordered pairof parts in contact
AN- # of contactconstraints (penetratiol
AThe size of the NDBG arrangemer®{$F)

AEach DBG hag'rO(r?) edges, where r is the number of pairs of parts in
contact

AComputing a candidate partition tak€{r\)
AWe will improve on this procedure below



Complexity

AGiven n parts in the assembly, let Bnhd 2 be two DBGs for a
certain motion space, DI¥(E), with ELP E2, the it suffices to test D
for strong connectivity (monotonicity of strong connectivity)

Aldeally, we would know this containment property without even
computing . Then this would save not only the test for SC but also

the construction of

AWe manage to exploit this observation for infinitesimal motions. We
exemplifythosfor infinitesimaltranslationin 2-space




Infinitesimal translations iB-space

AThe Mspace is 5

AWe project it on a plane tangent to the sphere: the information on
the two hemispheres is symmetric

ALetQ denote the complement of;: every point inQ; represents an
|nfln|teS|maItransaIt|onWhere Pdoes not penetrate P



Maximally covered cell

AMaximally covered cell: a cell that is covered by m@y@than its
Immediate neighbors

AClaim:it suffices to test only the DBGs of maximally covered cells for strong
connectivity



Maximally covered cells: number and algorithm

AGiven an assembly @ n polyhedral parts, the NDB@ the assembly
for infinitesimalmotions, where any direction of motion is defined by
d parameters, haat mostOKY) maximallycovered cells, wherKis
the number of ordered pairs gfarts incontact in the assembly. A
sample direction in each maximally covered cell lmarcomputedn
total time O(K-IN) time, where N denotesthe number of
cequivalent point¢plane contacts in thassembly, as before

ACompare with the earlier result @(N) ¢ in practiceK<<N¢ see
table in the next slides

AThe cells are sampled using linear programnainguch easier than
computing arrangements in higher dimensions

[Guibaset al ‘@8]
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Fig. 12. Examples of the DBGs for the six tetrahedra

Fig. 11. Six tetrahedra in contact!®






