
א"תשע/אדר ב/ט"כ

1

Algorithmic Robotics

and Motion Planning

Spring 2011

Collision detection and proximity queries

Dan Halperin

School of Computer Science

Tel Aviv University

Today’s lesson

 terminology, motivation, and variants

 the case of convex polytopes; the Dobkin-

Kirkpatrick hierarchy

 arbitrary polytopes/objects, bounding volume

hierarchies

 objects on the move, exploiting temporal

coherence

Algorithmic Robotics and Motion Planning 2

Connection to other lessons

 past: Minkowski sums, which constitute a

central tool for collision detection and related

queries under translation

 future: (i) sampling-based planning, and (ii)

self-collision detection for large kinematic

structures

Algorithmic Robotics and Motion Planning 3

Collision detection, the basic query

 given two objects P and Q (typically in R2 or

R3) decide whether P ∩ Q ≠ ∅

sometimes referred to as interference detection or

intersection detection, whereas the term collision

detection is reserved for predicting collision while in

motion

Algorithmic Robotics and Motion Planning 4

Variants

 minimum distance between P and Q

 penetration depth

 dynamic (one or both are moving)

 determine first intersection along a trajectory

 2-body, N-body

 more

Algorithmic Robotics and Motion Planning 5

Motivation

 dynamic simulation

 walkthroughs, virtual environments

 computer games

 molecular modeling

 haptic rendering [displaying computer controlled

forces on the user to make them sense the tactual feel of

virtual objects]

 …

 sampling-based motion planning

Algorithmic Robotics and Motion Planning 6

א"תשע/אדר ב/ט"כ

2

Sampling-based motion planning, reminder

Note:

For simplicity, configuration space and

workspace are identical, in this example

basic PRM (Probabilistic Road-

Map) algorithm in a nutshell

 randomly sample n valid robot

configurations (“milestones”)

 connect close-by

configurations by dense

sampling (“local-planning”)

 discard invalid edges

Algorithmic Robotics and Motion Planning

THE CASE OF CONVEX POLYTOPES

8Algorithmic Robotics and Motion Planning

Linear programming
a typical formulation

Algorithmic Robotics and Motion Planning 9

 find x1,x2,…xd to minimize

 c1x1+c2x2+…+cdxd

 subject to the constraints

 a11x1+a12x2+…a1dxd ≤ b1

 a21x1+a22x2+…a2dxd ≤ b2

 …

 an1x1+an2x2+…andxd ≤ bn

 aij s, bi s, cis, real numbers

Linear programming, cont’d

Algorithmic Robotics and Motion Planning 10

 major role in optimization, numerous

applications

 efficient solutions and good implementations

 geometric interpretation

Linear programming for collision

detection

Algorithmic Robotics and Motion Planning 11

 to decide if two polytopes intersect: throw in

all half-spaces (supporting the faces and

containing the respective polytope) and look

for a feasible solution under arbitrary

objective function

 to find a separating hypreplane between the

two polytopes, define an LP such that the

vertices of the two polytopes are on distinct

sides of the (unknown) hyperplane

Finding a separating plane using LP

if P= {p1, … , pm} and Q = {q1, … , qn}, find a hyperplane

H: ax + by + cz + d = 0, such that:

ap1x + bp1y + cp1z + d > 0

ap2x + bp2y + cp2z + d > 0

: : :

apmx + bpmy + cpmz + d > 0

aq1x + bq1y + cq1z + d < 0

aq2x + bq2y + cq2z + d < 0

: : :

aqnx + bqny + cqnz + d < 0

Algorithmic Robotics and Motion Planning

א"תשע/אדר ב/ט"כ

3

THE CASE OF CONVEX POLYTOPES

The Dobkin-Kirkpatrick hierarchy

13Algorithmic Robotics and Motion Planning

P1=P

The Dobkin-Kirkpatrick hierarchy

P2

P3

let P be a convex polytope with a

vertex set V(P), where |V(P)| = n

define the hierarchy

P1, P2, …, Pk where:

•P1=P and Pk is a simplex

•Pi+1  Pi and V(Pi+1)  V(Pi).

•the vertices of V(Pi) - V(Pi+1) form

an independent set in Pi.

Algorithmic Robotics and Motion Planning

DK hierarchy, cont’d

 each face F of Pi+1 that is not a face of Pi can be

associated with a unique vertex v of Pi, that lies

in the half-space opposite to Pi+1 with respect to

the hyperplane supporting F

 the hierarchy has O(log n) height, O(n) size, and

the constant max degree over all vertices of all

polytopes in the hierarchy

Algorithmic Robotics and Motion Planning 15

Polytope–hyperplane separation

let (Pi,H) be the separating distance of Pi and a

hyperplane H, obtained at some point ri  V(Pi)

let H’ be a hyperplane parallel to H that

touches ri. then:

HH’

ri

Pi

Pi-1



























),'(

),'(
min),(

)(

1

)(

1

1
SHP

SHP
SP

i

i

i





thus (P,H) can be

computed in O(log n)

time

Algorithmic Robotics and Motion Planning

DK hierarchy, more applications

 given two polytopes in R3 , after linear time

preprocessing using linear space, the DK

hierarchy of the two polytopes (or some

variants of it) can be used to answer a variety

of proximity queries in (poly)logarithmic time:

minimum separation, directional penetration

depth

Algorithmic Robotics and Motion Planning 17

BVH, basics

Algorithmic Robotics and Motion Planning 18

 a recursive partitioning of objects that allows

for quick pruning of irrelevant intersection

tests, represented as a tree

 the root bounds the entire object/ambient

space and the leaves bound a small number

of features

 construction: bottom-up or top-down

 queries answered by traversing two trees

from the root to the leaves

א"תשע/אדר ב/ט"כ

4

BVH, variants

Algorithmic Robotics and Motion Planning 19

 partitioning the objects vs. space (e.g., octrees)

 the type of bounding volume: spheres, AABBs,

OBBs, spherical shells, ellipsoids, and more

 the type of underlying objects: convex

polytopes, polygon soups, spheres, and more

 we will describe a BVH partitioning the object,

which are represented as polygon soups, using

OBBs

BOUNDING VOLUME HIERARCHIES (BVH)

20Algorithmic Robotics and Motion Planning

BVH, cost

Algorithmic Robotics and Motion Planning 21

 total cost of interference detection

Nv x Cv + Np x Cp

 v stands for volume and p for primitive, N for

number and C for cost

 Nv : number of bounding volumes pair overlap test

 Cv : cost of one overlap test

 Np : number of primitives pairs tested for intersection

 Cp : cost of primitive intersection test

BVH, tradeoffs

Algorithmic Robotics and Motion Planning 22

 total cost of interference detection

Nv x Cv + Np x Cp

 tight-fit bounding volumes vs. simple loose fit

BV

 simple BVs have low Cv but may incur large

Nv and Np; tight-fit BVs have higher Cv

 no single hierarchy gives the best solution in

all scenarios, even not for the same models

in different placements

OBBTrees
[Gottschalk-Lin-Manocha ’96]

Algorithmic Robotics and Motion Planning 23

 BVH partitioning the objects, which are

represented as polygon soups, using OBBs

 tight-fitting OBBs using principal component

analysis (PCA)

 improved BV overlap test using a so-called

separating-axis theorem

 the tree is constructed top down, splitting the

soup by a plane cutting through the major

axis of an OBB

Oriented Bounding Boxes (OBBs)

compare with the AABB

Algorithmic Robotics and Motion Planning

א"תשע/אדר ב/ט"כ

5

Tight-fitting OBBs, bounding a set of

triangles

 

            











n

i

i

T

ii

T

ii

T

i

n

i

iii

rrqqpp
n

rqp
n

1

1

3

1

3

1





 compute the 3-dimensional mean vector,

and the 33 covariance matrix:

 the matrix  is symmetric, therefore its eigenvectors are

mutually orthogonal

 use the normalized eigenvectors as the axes of the

bounding box

pi

qi

ri

Algorithmic Robotics and Motion Planning

Tight-fitting OBBs, improvements

 [GLM] use the convex hulls of the triangle

vertices to reduce the influence of “buried”

vertices

 they use the area of convex hull faces as a

continuous version of densely sampling the

convex hull boundary

Algorithmic Robotics and Motion Planning

l

BB overlap test

 two boxes do not intersect iff there exists a line l such

that their projections onto this line do not overlap; it is

then called the separating axis

Algorithmic Robotics and Motion Planning

The separating-axis theorem

 the separating axis of two oriented boxes

is either perpendicular to one of the faces,

or can be obtained as the vector product

of two box axes

 this means that 15 axes has to be tried:

one for each face normal for a total of 6,

and one for each pair of axes, one from

each box, for a total of 9

Algorithmic Robotics and Motion Planning 28

The recursive partitioning

 top-down

 find the OBB of the entire soup

 take a plane π orthogonal to the longest axis

at the mean of the projection of the vertices

along the axis

 partition the polygons according to the side of

π where their center lies

 if one axis does not yield a subdivision

proceed to other axes, or determine the set

indivisible

Algorithmic Robotics and Motion Planning 29

Implementation

 RAPID, OBBs [GLM `96]

 PQP (Proximity Query Package) [LGLM `99],

uses OBBs for collision detection and

rectangular swept-sphere volumes for

distance queries

Algorithmic Robotics and Motion Planning 30

א"תשע/אדר ב/ט"כ

6

OBJECTS ON THE MOVE

31Algorithmic Robotics and Motion Planning

Tracking the minimum separation

distance

 finding the closest features between two

polytopes P and Q is equivalent to finding the

closest feature of P⊕ -Q to the origin

 static case:

 compute the distance of all features of the

Minkowski sum from the origin [GJK]

 use “hill climbing” [Cameron’s improvement]

 dynamic case using temporal coherence:

 start with the feature found in the previous query

Algorithmic Robotics and Motion Planning 32

Tracking the minimum separation

distance, cont’d

 ample experimental evidence of effectiveness

 alternative approach by Lin and Canny

Algorithmic Robotics and Motion Planning 33

Reference

 Collision and Proximity Queries,

by Lin and Manocha,

Chapter 35 of the Handbook of Discrete and

Computational Geometry,

Goodman and O’Rourke, eds

high-level comprehensive survey with many

references

Algorithmic Robotics and Motion Planning 34

Assignment no. 3

 all the questions refer to a rod (segment) translating and

rotating among polygons in the plane

 3.1 show that the actual complexity of the free space is

O(n2)

 3.2 (p2) devise and implement a simple and effective

structure for collision detection between a fixed length

rod and a set of polygons in the plane

 3.3 (p2) solve this motion planning problem with PRM,

using your solution of 3.2 for collision detection

 3.4 (optional, difficult) devise an efficient algorithm to

solve the problem

Algorithmic Robotics and Motion Planning 35

THE END

36Algorithmic Robotics and Motion Planning

