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Today’s lesson

 terminology, motivation, and variants

 the case of convex polytopes; the Dobkin-

Kirkpatrick hierarchy

 arbitrary polytopes/objects, bounding volume 

hierarchies

 objects on the move, exploiting temporal 

coherence
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Connection to other lessons

 past: Minkowski sums, which constitute a 

central tool for collision detection and related 

queries under translation

 future: (i) sampling-based planning, and (ii) 

self-collision detection for large kinematic 

structures
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Collision detection, the basic query

 given two objects P and Q (typically in R2 or 

R3) decide whether P ∩ Q ≠ ∅

sometimes referred to as interference detection or 

intersection detection, whereas the term collision 

detection is reserved for predicting collision while in 

motion
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Variants

 minimum distance between P and Q

 penetration depth

 dynamic (one or both are moving)

 determine first intersection along a trajectory

 2-body, N-body

 more
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Motivation

 dynamic simulation

 walkthroughs, virtual environments

 computer games

 molecular modeling

 haptic rendering [displaying computer controlled 

forces on the user to make them sense the tactual feel of 

virtual objects]

 …

 sampling-based motion planning
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Sampling-based motion planning, reminder

Note:

For simplicity, configuration space and 

workspace are identical, in this example 

basic PRM (Probabilistic Road-

Map) algorithm in a nutshell

 randomly sample n valid robot 

configurations (“milestones”)

 connect close-by 

configurations by dense 

sampling (“local-planning”)

 discard invalid edges
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THE CASE OF CONVEX POLYTOPES
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Linear programming
a typical formulation
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 find x1,x2,…xd to minimize 

 c1x1+c2x2+…+cdxd

 subject to the constraints

 a11x1+a12x2+…a1dxd ≤ b1

 a21x1+a22x2+…a2dxd ≤ b2

 …

 an1x1+an2x2+…andxd ≤ bn

 aij s, bi s, cis, real numbers

Linear programming, cont’d
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 major role in optimization, numerous 

applications

 efficient solutions and good implementations

 geometric interpretation

Linear programming for collision 

detection
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 to decide if two polytopes intersect: throw in 

all half-spaces (supporting the faces and 

containing the respective polytope) and look 

for a feasible solution under arbitrary 

objective function

 to find a separating hypreplane between the 

two polytopes, define an LP such that the 

vertices of the two polytopes are on distinct 

sides of the (unknown) hyperplane

Finding a separating plane using LP

if P= {p1, … , pm} and Q = {q1, … , qn}, find a hyperplane

H: ax + by + cz + d = 0, such that:

ap1x + bp1y + cp1z + d > 0

ap2x + bp2y + cp2z + d > 0

:             :            :

apmx + bpmy + cpmz + d > 0

aq1x + bq1y + cq1z + d < 0

aq2x + bq2y + cq2z + d < 0

:             :            :

aqnx + bqny + cqnz + d < 0
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THE CASE OF CONVEX POLYTOPES

The Dobkin-Kirkpatrick hierarchy
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P1=P

The Dobkin-Kirkpatrick hierarchy

P2

P3

let P be a convex polytope with a

vertex set V(P), where |V(P)| = n

define the hierarchy 

P1, P2, …, Pk where:

•P1=P and Pk is a simplex

•Pi+1  Pi and V(Pi+1)  V(Pi).

•the vertices of V(Pi) - V(Pi+1) form

an independent set in Pi.
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DK hierarchy, cont’d

 each face F of Pi+1 that is not a face of Pi can be 

associated with a unique vertex v of Pi, that lies 

in the half-space opposite to Pi+1 with respect to 

the hyperplane supporting F

 the hierarchy has O(log n) height, O(n) size, and 

the constant max degree over all vertices of all 

polytopes in the hierarchy
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Polytope–hyperplane separation

let (Pi,H) be the separating distance of Pi and a 

hyperplane H, obtained at some point ri  V(Pi)

let H’ be a hyperplane parallel to H that 

touches ri. then:
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thus (P,H) can be 

computed in O(log n) 

time
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DK hierarchy, more applications

 given two polytopes in R3 , after linear time 

preprocessing using linear space, the DK 

hierarchy of the two polytopes (or some 

variants of it) can be used to answer a variety 

of proximity queries in (poly)logarithmic time: 

minimum separation, directional penetration 

depth
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BVH, basics
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 a recursive partitioning of objects that allows 

for quick pruning of irrelevant intersection 

tests, represented as a tree

 the root bounds the entire object/ambient 

space and the leaves bound a small number 

of features

 construction: bottom-up or top-down

 queries answered by traversing two trees 

from the root to the leaves  
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BVH, variants
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 partitioning the objects vs. space (e.g., octrees)

 the type of bounding volume: spheres, AABBs, 

OBBs, spherical shells, ellipsoids, and more

 the type of underlying objects: convex 

polytopes, polygon soups, spheres, and more

 we will describe a BVH partitioning the object, 

which are represented as polygon soups, using 

OBBs 

BOUNDING VOLUME HIERARCHIES (BVH)
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BVH, cost
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 total cost of interference detection

Nv x Cv + Np x Cp

 v stands for volume and p for primitive, N for 

number and C for cost

 Nv : number of bounding volumes pair overlap test

 Cv : cost of one overlap test

 Np : number of primitives pairs tested for intersection

 Cp : cost of primitive intersection test

BVH, tradeoffs
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 total cost of interference detection

Nv x Cv + Np x Cp

 tight-fit bounding volumes vs. simple loose fit 

BV

 simple BVs have low Cv but may incur large 

Nv and Np; tight-fit BVs have higher Cv

 no single hierarchy gives the best solution in 

all scenarios, even not for the same models 

in different placements

OBBTrees
[Gottschalk-Lin-Manocha ’96]
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 BVH partitioning  the objects, which are 

represented as polygon soups, using OBBs 

 tight-fitting OBBs using principal component 

analysis (PCA)

 improved BV overlap test using a so-called 

separating-axis theorem

 the tree is constructed top down, splitting the 

soup by a plane cutting through the major 

axis of an OBB

Oriented Bounding Boxes (OBBs)

compare with the AABB
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Tight-fitting OBBs, bounding a set of 

triangles
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 compute the 3-dimensional mean vector,

and the 33 covariance matrix:

 the matrix  is symmetric, therefore its eigenvectors are 

mutually orthogonal

 use the normalized eigenvectors as the axes of the 

bounding box

pi

qi

ri
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Tight-fitting OBBs, improvements

 [GLM] use the convex hulls of the triangle 

vertices to reduce the influence of “buried” 

vertices

 they use the area of convex hull faces as a 

continuous version of densely sampling the 

convex hull boundary 
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BB overlap test

 two boxes do not intersect iff there exists a line l such 

that their projections onto this line do not overlap; it is 

then called the separating axis
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The separating-axis theorem

 the separating axis of two oriented boxes 

is either perpendicular to one of the faces, 

or can be obtained as the vector product 

of two box axes

 this means that 15 axes has to be tried: 

one for each face normal for a total of 6, 

and one for each pair of axes, one from 

each box, for a total of 9
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The recursive partitioning

 top-down

 find the OBB of the entire soup

 take a plane π orthogonal to the longest axis 

at the mean of the projection of the vertices 

along the axis

 partition the polygons according to the side of 

π where their center lies 

 if one axis does not yield a subdivision 

proceed to other axes, or determine the set 

indivisible
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Implementation

 RAPID, OBBs [GLM `96]

 PQP (Proximity Query Package) [LGLM `99], 

uses OBBs for collision detection and 

rectangular swept-sphere volumes for 

distance queries
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OBJECTS ON THE MOVE
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Tracking the minimum separation 

distance

 finding the closest features between two 

polytopes P and Q is equivalent to finding the 

closest feature of P⊕ -Q to the origin

 static case:

 compute the distance of all features of the 

Minkowski sum from the origin [GJK]

 use “hill climbing” [Cameron’s improvement]

 dynamic case using temporal coherence:

 start with the feature found in the previous query
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Tracking the minimum separation 

distance, cont’d

 ample experimental evidence of effectiveness

 alternative approach by Lin and Canny
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Reference

 Collision and Proximity Queries,                  

by Lin and Manocha,                            

Chapter 35 of the Handbook of Discrete and 

Computational Geometry,                

Goodman and O’Rourke, eds

high-level comprehensive survey with many 

references 
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Assignment  no. 3

 all the questions refer to a rod (segment) translating and 

rotating among polygons in the plane

 3.1 show that the actual complexity of the free space is 

O(n2)

 3.2 (p2) devise and implement a simple and effective 

structure for collision detection between a fixed length 

rod and a set of polygons in the plane

 3.3 (p2) solve this motion planning problem with PRM, 

using your solution of 3.2 for collision detection

 3.4 (optional, difficult) devise an efficient algorithm to 

solve the problem
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THE END
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