Central Dogma of Molecular Biology

Understanding the 3-D structure of proteins is essential to understanding life

Algorithmic robotics and Motion Planing

Dynamic Maintenance of Kinematic Chains

Itay Lotan

Protein Folding

- Protein chain spontaneously collapses (folds) to compact 3-D structure

- Recurring structural elements:
 - α-helix
 - β-strand
 - loop

Chain of Amino-Acids

- 20 naturally occurring amino-acids

- The amino acids concatenate to form the protein

Molecule ≈ Robot

Conformational space

Ala, Pro, Trp, Arg
Monte Carlo Simulation (MCS)

- Popular method for sampling the conformation space of proteins
- Used for
 - estimating thermodynamic quantities
 - searching for low-energy conformations and the folded structure

MCS: How It Works

1. Perturb current conformation at random
2. Compute energy of new conformation
3. Accept with probability:
 \[P(\text{accept}) = \min\{1, e^{-\Delta E/k_B T}\} \]
 \(\{ \Delta E \text{ - energy, } k_B \text{ - Boltzmann's constant, } T \text{ - temperature} \} \)

Requires \(\gg 10^9 \) steps to sample adequately

Energy Function

\[E = \sum \text{bonded terms} + \sum \text{non-bonded terms} + \sum \text{solvation terms} \]

- Bonded terms
 - Bond-stretching, bending, rotating
 - \(O(n) \)
- Non-bonded terms
 - E.g., Van der Waals and electrostatic
 - Depend on distances between pairs of atoms
 - \(O(n^2) \) - Expensive to compute
- Solvation terms
 - May require computing molecular surface

Energy Function

\[E = \sum \text{bonded terms} + \sum \text{non-bonded terms} + \sum \text{solvation terms} \]

- Bonded terms
 - Bond-stretching, bending, rotating
 - \(O(n) \)
- Non-bonded terms
 - E.g., Van der Waals and electrostatic
 - Depend on distances between pairs of atoms
 - \(O(n^2) \) - Expensive to compute
- Solvation terms
 - May require computing molecular surface

Non-Bonded Terms

- Energy terms go to 0 when distance increases
 - Cutoff distance (6 - 12Å)
- vdW forces prevent atoms from bunching up
 - Only \(O(n) \) interacting pairs

Finding Pairs

<table>
<thead>
<tr>
<th>Method</th>
<th>Update</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute Force</td>
<td>(\Theta(n))</td>
<td>(\Theta(n^2))</td>
</tr>
<tr>
<td>Grid</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Spatially-adapted hierarchy</td>
<td>(O(n \log n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Chain-aligned hierarchy</td>
<td>(O(n))</td>
<td>(\Theta(n^{4/3}))</td>
</tr>
<tr>
<td>ChainTree</td>
<td>(O(k \log \frac{n}{k}))</td>
<td>(\Theta(n^{4/3}))</td>
</tr>
</tbody>
</table>

Challenge: find interacting pairs without enumerating all atom pairs?
Finding Pairs

<table>
<thead>
<tr>
<th></th>
<th>Update</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute Force</td>
<td>(\Theta(n))</td>
<td>(\Theta(n^2))</td>
</tr>
<tr>
<td>Grid</td>
<td>(\Theta(n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Spatially-adapted hierarchy</td>
<td>(O(n \log n))</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>Chain-aligned hierarchy</td>
<td>(O(n))</td>
<td>(O(n^{4/3}))</td>
</tr>
<tr>
<td>ChainTree</td>
<td>(O(k \log \frac{n}{k}))</td>
<td>(O(n^{4/3}))</td>
</tr>
</tbody>
</table>

Grid Method

- Subdivide 3-space into cubic cells
- Compute cell that contains each atom center
- Represent grid as hash table

Asymptotically optimal in worst-case
Finding Pairs

<table>
<thead>
<tr>
<th>Update</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute Force</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Grid</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Spatially-adapted hierarchy</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Chain-aligned hierarchy</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>ChainTree</td>
<td>$O(k \log \frac{n}{k})$</td>
</tr>
</tbody>
</table>

Protein as Kinematic Chain

- links
- joints / DoFs (degrees of freedom)

Properties of kinematic chains

- Small changes \Rightarrow large effects
Properties of kinematic chains

- Small changes ⇒ large effects
- Local changes ⇒ global effects
- Few DoF changes ⇒ long rigid sub-chains

ChainTree: A tale of two hierarchies

- Transform hierarchy: approximates kinematics of protein backbone at successive resolutions
- Bounding volume hierarchy: approximates geometry of protein at successive resolutions

Hierarchy of Transforms

Rigid Body Transform = Translation + Rotation

\[
T = \begin{bmatrix}
 t_0 \\
 t_1 \\
 t_2 \\
\end{bmatrix}
\quad R = \begin{bmatrix}
 r_{0,0} & r_{0,1} & r_{0,2} \\
 r_{1,0} & r_{1,1} & r_{1,2} \\
 r_{2,0} & r_{2,1} & r_{2,2} \\
\end{bmatrix}
\]
Hierarchy of Transforms

The ChainTree

Updating the ChainTree

Detecting Interactions

Update path to root:
- Recompute transforms that "shortcut" the DoF change
- Recompute BVs that contain the DoF change
- \(O(k \log_2(n/k)) \) work for \(k \) simultaneous changes

Pruning rules:
1. Prune search when distance between bounding volumes is more than cutoff distance
2. Do not search inside rigid sub-chains (no marked node between the tested nodes)
Computational complexity

- Updating:
 \[O\left(k \log \frac{n}{k}\right) \]

- Searching:
 \[\Theta\left(n^{4/3}\right) \] worst case bound

Much faster in practice

Proof

- Regularize the chain:
 - Replace all links by their bounding spheres
 - Make all sphere equal in size by growing smaller spheres
 - Further grow all links equally until each pair of consecutive links is in contact

No effect on complexity of the problem

Proof

Assumption: Distance between link centers > \(\delta \cdot r \)

Proposition: Each link overlaps at most \(M \) other links

\[M_i = 27 \cdot (2^i)^2 / q \quad 0 < q < 1 \]

At level \(i \), replace \(r \) with \(2^i \cdot r \)

Lemma: given two OBBs inside sphere of radius \(R \), their OBB fits inside a sphere of radius \(\sqrt{3} \cdot R \)

Proof: We will prove the existence of \(c \) by induction

We still need to show this is true for the ChainTree BVs

We will prove the existence of \(c \) by induction
Proof

Base: for levels 0 through 4 choose an appropriate $c = c_1$

Induction step:
- Each BV at level $i-5$ fits inside a sphere of radius $c \cdot 2^{i-5}r$
- A sphere of radius $2r$ is enough to bound all links inside a BV at level i
- No point in any of the 32 BVs at level $i-5$ is further than $2r + 2 \cdot c \cdot 2^{i-5}r$ from the center of this sphere
- No point in any of the 16 BVs at level $i-4$ is further than $\sqrt{3}(2r + 2 \cdot c \cdot 2^{i-5}r)$ from the center of this sphere
Proof

\((2^i r + 2c \cdot 2^{-i-5} r) \cdot \sqrt{3}^i \leq c \cdot 2^i r \)

\[\left(\frac{1}{\sqrt{3}} - 1 \right)^{-1} \leq c \]

\[c = \max \left\{ \left(\frac{1}{\sqrt{3}} - 1 \right)^{-1}, c_i \right\} \]

Proof

Each link is a sphere of radius r
- Place d links along x-axis (starting at origin)
- Place d links parallel to y-axis
- Place d links parallel to z-axis
This constitutes a unit

Proof

- Place d/8 units one next to the other each translated by (2r, -2r, 0)
This constitutes a layer

Proof

- The point \((2(d-1)r, (d-1)r, \sqrt{4/(d-1) r}) \) is contained inside convex hull of each unit
- There is a level in BVH where each unit has its own BV
- At this level all BV pairs intersect
- We have \(\frac{1}{2} \left[\frac{d^2}{64} \right] \) overlaps: \(\Omega(n^{4/3}) \)
Experimental Setup

- Energy function:
 - Van der Waals
 - Electrostatic
 - Attraction between folded-state contacts
 - Cut off at 12Å
- 300,000 steps MCS with Grid and ChainTree
- **Steps are the same with both methods**
- Early rejection for large vdW terms

Test

Two-Pass ChainTree
(ChainTree+)

1st pass: small cutoff distance to detect steric clashes
2nd pass: normal cutoff distance

Computing the Energy

Recursively search ChainTree for interactions

Pruning rules:
1. Prune search when distance between bounding volumes is more than cutoff distance
2. Do not search inside rigid sub-chains (no marked node between the tested nodes)
Computing the energy

The EnergyTree
Extension: Interaction with Solvent

- Implicit solvent model: solvent as continuous medium, interface is solvent-accessible surface

E. Eyal, D. Halperin, Dynamic Maintenance of Molecular Surfaces under Conformational Changes. Proc. 21st ACM Symposium on Computational Geometry (SoCG05) 2005