Algorithmic Robotics and Motion Planning

Spring 2018

Collision detection and proximity queries

Dan Halperin
School of Computer Science
Tel Aviv University
Today’s lesson

• terminology, motivation, and variants
• the case of convex polytopes: the Dobkin-Kirkpatrick hierarchy and recent log-time query algorithms
• arbitrary polytopes/objects, bounding volume hierarchies
• objects on the move, exploiting temporal coherence
Collision detection, the basic query

• given two objects P and Q (typically in \mathbb{R}^2 or \mathbb{R}^3) decide whether $P \cap Q \neq \emptyset$

sometimes referred to as interference detection or intersection detection, whereas the term collision detection is reserved for predicting collision while in motion, or continuous collision detection
Variants

• minimum distance between P and Q
• penetration depth
• dynamic (one or both are moving)
• determine first intersection along a trajectory
• 2-body, N-body
• more
Motivation

• sampling-based motion planning
• dynamic simulation
• walkthroughs, virtual environments
• computer games
• molecular modeling
• haptic rendering [displaying computer controlled forces on the user to make them sense the tactual feel of virtual objects]
• ...
THE CASE OF CONVEX POLYTOPES
Linear programming
a typical formulation

• find x_1, x_2, \ldots, x_d to minimize
 • $c_1 x_1 + c_2 x_2 + \ldots + c_d x_d$

• subject to the constraints
 • $a_{11} x_1 + a_{12} x_2 + \ldots + a_{1d} x_d \leq b_1$
 • $a_{21} x_1 + a_{22} x_2 + \ldots + a_{2d} x_d \leq b_2$
 • \ldots
 • $a_{n1} x_1 + a_{n2} x_2 + \ldots + a_{nd} x_d \leq b_n$

• a_{ij}s, b_is, c_is, real numbers
Linear programming for collision detection

• to decide if two polytopes intersect: throw in all half-spaces (supporting the faces and containing the respective polytope) and look for a feasible solution under arbitrary objective function

• to find a separating hypreplane between the two polytopes, define an LP such that the vertices of the two polytopes are on distinct sides of the (unknown) hyperplane
Finding a separating plane using LP

if \(P = \{p_1, \ldots, p_m\} \) and \(Q = \{q_1, \ldots, q_n\} \), find a hyperplane \(H: ax + by + cz + d = 0 \), such that:

\[
\begin{align*}
 ap_{1x} + bp_{1y} + cp_{1z} + d &> 0 \\
 ap_{2x} + bp_{2y} + cp_{2z} + d &> 0 \\
 \vdots &\quad \vdots &\quad \vdots \\
 ap_{mx} + bp_{my} + cp_{mz} + d &> 0 \\
\end{align*}
\]

\[
\begin{align*}
 aq_{1x} + bq_{1y} + cq_{1z} + d &< 0 \\
 aq_{2x} + bq_{2y} + cq_{2z} + d &< 0 \\
 \vdots &\quad \vdots &\quad \vdots \\
 aq_{nx} + bq_{ny} + cq_{nz} + d &< 0 \\
\end{align*}
\]
Collision detection between two convex polygons

in $O(\log |P| + \log |Q|)$, assuming the vertices of each polygon are given in (CCW) order

[Barba-Langerman ‘15]
• TP: the CH of three vertices of P
• TQ: the edge hull of three edges of Q

• V*(P): the set of vertices of P after pruning
• E*(Q): the set of edges of Q after pruning
• Correctness invariant: P ∩ Q ≠ ∅ iff CH(V*(P)) intersects an edge of E*(Q)
• Separation invariant or intersection invariant holds after each pruning step
More generally, in any fixed dimension

[Barba-Langreman ‘15]

• Given two convex polytopes P and Q in \mathbb{R}^d for a fixed d, they can each be preprocessed separately in time proportional to its size ($|P|, |Q|$) such that collision detection between P and Q can be determined in time $O(\log |P| + \log |Q|)$

• Relying on (a variant of) the Dobkin-Kirkpatrick hierarchy

• An algorithm with such query time was previously known only in the plane
The Dobkin-Kirkpatrick hierarchy

Let P be a convex polytope with a vertex set $V(P)$, where $|V(P)| = n$

define the hierarchy P_1, P_2, \ldots, P_k where:

• $P_1 = P$ and P_k is a simplex
• $P_{i+1} \subset P_i$ and $V(P_{i+1}) \subset V(P_i)$.
• the vertices of $V(P_i) - V(P_{i+1})$ form an independent set in P_i.
DK hierarchy, cont’d

• each face F of P_{i+1} that is not a face of P_i can be associated with a unique vertex v of P_i, that lies in the half-space opposite to P_{i+1} with respect to the hyperplane supporting F

• the hierarchy has $O(\log n)$ height, $O(n)$ size, and the constant max degree over all vertices of all polytopes in the hierarchy
Polytope–hyperplane separation

let $\sigma(P_i, H)$ be the separating distance of P_i and a hyperplane H, obtained at some point $r_i \in V(P_i)$

let H' be a hyperplane parallel to H that touches r_i. then:

$$\sigma(P_{i-1}, S) = \min \left\{ \sigma(P_{i-1} \cap H'^{+}, S), \sigma(P_{i-1} \cap H'^{-}, S) \right\}$$
Polytope–hyperplane separation, cont’d

Q: how do we find the intersection of P_{i-1} and H^-? Namely the single vertex v of P_{i-1} in H^-

A: we maintain a projection of the P_i’s onto a hyperplane orthogonal to H; this sequence of projections is a DK hierarchy in one dimension less and the v will grow out of the two edges incident to r_i in the projection.

thus $\sigma(P,H)$ can be computed in $O(\log n)$ time

\[
\sigma(P_{i-1}, S) = \min \left\{ \sigma(P_{i-1} \cap H^{(+)}, S), \sigma(P_{i-1} \cap H^{(-)}, S) \right\}
\]
DK hierarchy, more applications

- given two polytopes in \mathbb{R}^3, after linear time preprocessing using linear space, the DK hierarchy of the two polytopes (or some variants of it) can be used to answer a variety of proximity queries in (poly)logarithmic time: minimum separation, directional penetration depth
BOUNDING VOLUME HIERARCHIES (BVH)
BVH, basics

• a recursive partitioning of objects that allows for quick pruning of irrelevant intersection tests, represented as a tree
• the root bounds the entire object/ambient space and the leaves bound a small number of features
• construction: bottom-up or top-down
• queries answered by traversing two trees from the root to the leaves
BVH, variants

• partitioning the objects vs. space (e.g., octrees)
• the type of bounding volume: spheres, AABBs, OBBs, spherical shells, ellipsoids, and more
• the type of underlying objects: convex polytopes, polygon soups, spheres, and more
• we will describe a BVH partitioning the object, which are represented as polygon soups, using OBBs
BVH, cost

• total cost of interference detection
 \[N_v \times C_v + N_p \times C_p \]

• \(v \) stands for volume and \(p \) for primitive, \(N \) for number and \(C \) for cost
 • \(N_v \) : number of bounding volumes pair overlap test
 • \(C_v \) : cost of one overlap test
 • \(N_p \) : number of primitives pairs tested for intersection
 • \(C_p \) : cost of primitive intersection test
BVH, tradeoffs

• total cost of interference detection
 \[N_v \times C_v + N_p \times C_p \]

• tight-fit bounding volumes vs. simple loose fit BV

• simple BVs have low \(C_v \) but may incur large \(N_v \) and \(N_p \); tight-fit BVs have higher \(C_v \)

• no single hierarchy gives the best solution in all scenarios, even not for the same models in different placements
OBBTrees

[Gottschalk-Lin-Manocha ’96]

• BVH partitioning the objects, which are represented as polygon soups, using OBBs
• tight-fitting OBBs using principal component analysis (PCA)
• improved BV overlap test using a so-called separating-axis theorem
• the tree is constructed top down, splitting the soup by a plane cutting through the major axis of an OBB
Oriented Bounding Boxes (OBBs) compare with the AABB
Tight-fitting OBBs, bounding a set of triangles

- compute the 3-dimensional mean vector, and the 3×3 covariance matrix:

$$\mu = \frac{1}{3n} \sum_{i=1}^{n} (p_i + q_i + r_i)$$

$$\Sigma = \frac{1}{3n} \sum_{i=1}^{n} ((p_i - \mu)^T (p_i - \mu) + (q_i - \mu)^T (q_i - \mu) + (r_i - \mu)^T (r_i - \mu))$$

- the matrix Σ is symmetric, therefore its eigenvectors are mutually orthogonal
- use the normalized eigenvectors as the axes of the bounding box
Tight-fitting OBBs, improvements

• [GLM] use the convex hulls of the triangle vertices to reduce the influence of “buried” vertices
• they use the area of convex hull faces as a continuous version of densely sampling the convex hull boundary
BB overlap test

• two boxes do not intersect iff there exists a line l such that their projections onto this line do not overlap; it is then called the separating axis
The separating-axis theorem

• the separating axis of two oriented boxes is either perpendicular to one of the faces, or can be obtained as the vector product of two box axes

• this means that 15 axes has to be tried: one for each face normal for a total of 6, and one for each pair of axes, one from each box, for a total of 9
The recursive partitioning

• top-down
• find the OBB of the entire soup
• take a plane π orthogonal to the longest axis at the mean of the projection of the vertices along the axis
• partition the polygons according to the side of π where their center lies
• if one axis does not yield a subdivision proceed to other axes, or determine the set indivisible
Implementation

• RAPID, OBBs [GLM `96]
• PQP (Proximity Query Package) [LGLM `99], uses OBBs for collision detection and rectangular swept-sphere volumes for distance queries
• FCL
OBJECTS ON THE MOVE
Tracking the minimum separation distance

- finding the closest features between two polytopes P and Q is equivalent to finding the closest feature of $P \oplus -Q$ to the origin
- static case:
 - compute the distance of all features of the Minkowski sum from the origin [GJK]
 - use “hill climbing” [Cameron’s improvement]
- dynamic case using temporal coherence:
 - start with the feature found in the previous query
Tracking the minimum separation distance, cont’d

• ample experimental evidence of effectiveness
• alternative approach by Lin and Canny
Reference

• Collision and Proximity Queries, by Lin, Manocha, and Kim
Chapter 39 of the Handbook of Discrete and Computational Geometry, Goodman, O’Rourke, Toth editors, 3rd Edition
high-level comprehensive survey with many references including the paper referred to from the presentation

• see also the website:
 http://gamma.cs.unc.edu/research/collision/

• The handbook in full: