Logarithmic-Time Point Location in General Two-Dimensional Subdivisions

Michal Kleinbort

Tel Aviv University, Dec 2015

Joint work with Michael Hemmer and Dan Halperin
Planar Point Location - Definition

- Let S be a planar subdivision consisting of faces, edges, and vertices

The Planar Point Location Problem

Input: Query point q
Output: The feature of S containing q

n - the number of subdivision edges
Outline

- Trapezoidal-map RIC point-location variants
- Depth vs. maximum query path length
- An efficient construction algorithm for static settings
- Open Problems
Outline

- Trapezoidal-map RIC point-location variants
- Depth vs. maximum query path length
- An efficient construction algorithm for static settings
- Open Problems
Two Variants of the Trapezoidal Map RIC Point Location

- **Basic algorithm** [Mulmuley ’90, Seidel ’91]
 - Expected $O(\log n)$ query time
 - Expected $O(n)$ size
 - Expected $O(n \log n)$ preprocessing time

- **Guaranteed variant** [de Berg et al. ’00]
 - Guaranteed $O(\log n)$ query time
 - Guaranteed $O(n)$ size
 - Expected $O(n \log^2 n)$ preprocessing time (?)
The Basic RIC Point Location Algorithm

Description: Builds the trapezoidal-map using a randomized incremental construction and maintains an auxiliary search-structure (DAG)

[Mulmuley '90, Seidel'91]
The Basic RIC Point Location Algorithm

Description: Builds the trapezoidal-map using a randomized incremental construction and maintains an auxiliary search-structure (DAG)

![Diagram of trapezoidal-map and DAG]

[Mulmuley ’90, Seidel’91]
The Basic RIC Point Location Algorithm

Description: Builds the trapezoidal-map using a randomized incremental construction and maintains an auxiliary search-structure (DAG)

![Diagram of the trapezoidal-map and DAG]

[Mulmuley ’90, Seidel’91]
The Basic RIC Point Location Algorithm

Description: Builds the trapezoidal-map using a randomized incremental construction and maintains an auxiliary search-structure (DAG)

[Mulmuley '90, Seidel'91]
The Basic RIC Point Location Algorithm

Description: Builds the trapezoidal-map using a randomized incremental construction and maintains an auxiliary search-structure (DAG)

[Mulmuley ’90, Seidel’91]
Description: Builds the trapezoidal-map using a randomized incremental construction and maintains an auxiliary search-structure (DAG)

[Mulmuley ’90, Seidel’91]
The Basic RIC Point Location Algorithm

Description: Builds the trapezoidal-map using a randomized incremental construction and maintains an auxiliary search-structure (DAG)

[Mulmuley ’90, Seidel’91]
The Basic RIC Point Location Algorithm

Description: Builds the *trapezoidal-map* using a randomized incremental construction and maintains an auxiliary search-structure (DAG)

![Diagram of trapezoidal-map and DAG]

[Mulmuley ’90, Seidel’91]
Basic Algorithm [Mulumley ’90, Seidel ’91] - Complexity

- **Expected** $O(\log n)$ query time
- **Expected** $O(n)$ size
- **Expected** $O(n \log n)$ preprocessing time
Guaranteed $O(\log n)$ Query Time and $O(n)$ Size

- S - the size of the DAG
- L - the length of the longest query path

- Verify S on the fly (S can be accessed in $O(1)$ time)
- Abort and rebuild if $S \geq c_1 n$
- Verify that $L \leq c_2 \log n$, rebuild otherwise
- Only a constant number of rebuilds is expected

- The probability that L is bad is very small
- The probability that S is bad is very small
Guaranteed $O(\log n)$ Query Time and $O(n)$ Size

- S - the size of the DAG
- L - the length of the longest query path

The main idea:
- Construct the DAG using the basic algorithm with some random insertion order
 - Verify S on the fly (S can be accessed in $O(1)$ time)
 - Abort and rebuild if $S \geq c_1 n$
- Verify that $L \leq c_2 \log n$, rebuild otherwise

[de Berg et al.]
Guaranteed $O(\log n)$ Query Time and $O(n)$ Size

- S - the size of the DAG
- L - the length of the longest query path

The main idea:

- Construct the DAG using the basic algorithm with some random insertion order
 - Verify S on the fly (S can be accessed in $O(1)$ time)
 - Abort and rebuild if $S \geq c_1 n$
- Verify that $L \leq c_2 \log n$, rebuild otherwise
- Only a constant number of rebuilds is expected
 - The probability that L is bad is very small
 - The probability that S is bad is very small

[de Berg et al.]
Guaranteed $O(\log n)$ Query Time and $O(n)$ Size

- $f(n)$ - Time to verify that \mathcal{L} is logarithmic on a DAG of n curves
- Overall expected time for construction: $O(n \log n + f(n))$
- It is unclear how to efficiently verify \mathcal{L}:
 - Claim that the expected verification time is $O(n \log^2 n)$
 - No concrete proof is given

[de Berg et al.]
Outline

- Trapezoidal-map RIC point-location variants
- Depth vs. maximum query path length
- An efficient construction algorithm for static settings
- Open Problems
Outline

- Trapezoidal-map RIC point-location variants
- Depth vs. maximum query path length
- An efficient construction algorithm for static settings
- Open Problems
Can We Efficiently Maintain L On-the-fly?

- The best known solution requires $\Omega(n \log n)$ size
Can We Efficiently Maintain \mathcal{L} On-the-fly?

- The best known solution requires $\Omega(n \log n)$ size

Idea: Maintain the depth D of the DAG instead (easy to maintain)
Can We Efficiently Maintain L On-the-fly?

- The best known solution requires $\Omega(n \log n)$ size

Idea: Maintain the depth D of the DAG instead (easy to maintain)

- D represents the length of the longest DAG path
The Modified Algorithm Using \(\mathcal{D} \)

The modified algorithm:

- Observe \(S \) and \(\mathcal{D} \) during construction
- Abort and rebuild structure if one of the following occurs:
 - \(S \geq c_1 n \)
 - \(\mathcal{D} \geq c_2 \log n \)

for suitable constants \(c_1, c_2 > 0 \)
The Modified Algorithm Using \mathcal{D}

The modified algorithm:

- Observe S and \mathcal{D} during construction
- Abort and rebuild structure if one of the following occurs:
 - $S \geq c_1 n$
 - $\mathcal{D} \geq c_2 \log n$
 for suitable constants $c_1, c_2 > 0$

- \mathcal{D} is not \mathcal{L}
 - Can we still expect a constant number of rebuilds?
The Difference between \mathcal{D} and \mathcal{L}

- Reminder: \mathcal{D} represents the length of the longest DAG path
- Some DAG paths are not search paths
 - \mathcal{D} is an upper bound on \mathcal{L}
 - \mathcal{D} may be significantly larger than \mathcal{L}
The Difference between D and L

- Reminder: D represents the length of the longest DAG path
- Some DAG paths are not search paths
 - D is an upper bound on L
 - D may be significantly larger than L
The Difference between \mathcal{D} and \mathcal{L}

- Reminder: \mathcal{D} represents the length of the longest DAG path
- Some DAG paths are not search paths
 - \mathcal{D} is an upper bound on \mathcal{L}
 - \mathcal{D} may be significantly larger than \mathcal{L}

\[cv_1(p_1, q_1) \]
\[cv_2(p_2, q_2) \]
The Difference between \mathcal{D} and \mathcal{L}

- Reminder: \mathcal{D} represents the length of the longest DAG path
- Some DAG paths are not search paths
 - \mathcal{D} is an upper bound on \mathcal{L}
 - \mathcal{D} may be significantly larger than \mathcal{L}
The Difference between D and L

- Reminder: D represents the length of the longest DAG path
- Some DAG paths are not search paths
 - D is an upper bound on L
 - D may be significantly larger than L
The Difference between D and L

- Reminder: D represents the length of the longest DAG path
- Some DAG paths are not search paths
 - D is an upper bound on L
 - D may be significantly larger than L
The Difference between \mathcal{D} and \mathcal{L}

- Reminder: \mathcal{D} represents the length of the longest DAG path
- Some DAG paths are not search paths
 - \mathcal{D} is an upper bound on \mathcal{L}
 - \mathcal{D} may be significantly larger than \mathcal{L}

[Diagram showing the longest DAG path with vertices and edges labeled appropriately]
The Difference between D and L

- Reminder: D represents the length of the longest DAG path
- Some DAG paths are not search paths
 - D is an upper bound on L
 - D may be significantly larger than L
Towards a Worst-Case \mathcal{D}/\mathcal{L} Ratio

- Top-to-bottom insertion order
- \sqrt{n} blocks
- \sqrt{n} segments in each block
- \mathcal{D} is $\Omega(n)$
- \mathcal{L} is $O(\sqrt{n})$
Towards a Worst-Case \mathcal{D}/\mathcal{L} Ratio

- \mathcal{D} is $\Omega(n)$
- \mathcal{L} is $O(\sqrt{n})$
Towards a Worst-Case \mathcal{D}/\mathcal{L} Ratio

- \mathcal{D} is $\Omega(n)$
- \mathcal{L} is $O(\sqrt{n})$
Towards a Worst-Case D/L Ratio

- This construction ensures that each newly inserted segment intersects the trapezoid with the largest depth.
- A query can skip an entire block using only one comparison.
- Within the relevant block there are at most $O(\sqrt{n})$ comparisons.
Worst-Case \mathcal{D}/\mathcal{L} Ratio

- Top-to-bottom insertion order
- \mathcal{D} is $\Omega(n)$
- \mathcal{L} is $O(\log n)$
 - Achieved due to the recursive structure

Theorem 1

The worst-case ratio between \mathcal{D} and \mathcal{L} is $\Omega(n/\log n)$ and this bound is tight.
Worst-Case \mathcal{D}/\mathcal{L} Ratio

- Top-to-bottom insertion order
- \mathcal{D} is $\Omega(n)$
- \mathcal{L} is $O(\log n)$
 - Achieved due to the recursive structure

Theorem 1
The worst-case ratio between \mathcal{D} and \mathcal{L} is $\Omega(n/\log n)$ and this bound is tight.
Outline

- Trapezoidal-map RIC point-location variants
- Depth vs. maximum query path length
- An efficient construction algorithm for static settings
- Open Problems
Outline

- Trapezoidal-map RIC point-location variants
- Depth vs. maximum query path length
- An efficient construction algorithm for static settings
- Open Problems
Verifying \mathcal{L} After Construction in $O(n \log n)$ time

By verifying \mathcal{L} in $O(n \log n)$ time we get the following expected $O(n \log n)$ time construction algorithm:

- Construct the DAG with some random insertion order
 - Verify S on the fly (can be accessed in $O(1)$ time)
 - Abort and rebuild if $S \geq c_1 n$
- Verify in $O(n \log n)$ time that $\mathcal{L} \leq c_2 \log n$, rebuild otherwise
- Only a constant number of rebuilds is expected
An $O(n \log n)$ Verification Algorithm for L

Ingredients:
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

Ingredients:

- **Observation:** The length of a path in the DAG for a query point q is at most 3 times the number of all trapezoids that covered q throughout the algorithm [Har-Peled]
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

Ingredients:

- **Observation**: The length of a path in the DAG for a query point q is at most 3 times the number of **all trapezoids that covered q** throughout the algorithm [Har-Peled]
- A **reduction** from the collection of all trapezoids to a collection of axis-aligned rectangles
 - Uses a total order according to which curves can be translated one by one to $y = -\infty$ without hitting other curves that have not been moved yet [Guibas & Yao ’80]
 - Can be computed in $O(n \log n)$ time [Ottmann & Widmayer ’83]
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

Ingredients:

- **Observation**: The length of a path in the DAG for a query point q is at most 3 times the number of all trapezoids that covered q throughout the algorithm [Har-Peled]
- A reduction from the collection of all trapezoids to a collection of axis-aligned rectangles
 - Uses a total order according to which curves can be translated one by one to $y = -\infty$ without hitting other curves that have not been moved yet [Guibas & Yao ’80]
 - Can be computed in $O(n \log n)$ time [Ottmann & Widmayer ’83]
- An $O(n \log n)$ time algorithm for computing the cover-depth of a collection of n axis-aligned rectangles [Alt & Scharf ’10]
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

The key ingredient:

Observation (Har-Peled)

The length of a path in the DAG for a query point q is at most three times the number of trapezoids created throughout the algorithm that cover q
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

The key ingredient:

Observation (Har-Peled)

The length of a path in the DAG for a query point q is at most three times the number of trapezoids created throughout the algorithm that cover q.
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

The key ingredient:

Observation (Har-Peled)

The length of a path in the DAG for a query point q is at most three times the number of trapezoids created throughout the algorithm that cover q.
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

The key ingredient:

Observation (Har-Peled)

The length of a path in the DAG for a query point q is at most three times the number of trapezoids created throughout the algorithm that cover q.

![Diagram showing a DAG with trapezoids and query points, illustrating the observation.](image)
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

The key ingredient:

Observation (Har-Peled)

The length of a path in the DAG for a query point q is at most three times the number of trapezoids created throughout the algorithm that cover q.
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

The key ingredient:

Observation (Har-Peled)

The length of a path in the DAG for a query point q is at most three times the number of trapezoids created throughout the algorithm that cover q
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

The key ingredient:

Observation (Har-Peled)

The length of a path in the DAG for a query point q is at most three times the number of trapezoids created throughout the algorithm that cover q
Reduction from Trapezoids to Rectangles

- \(C \) - a set of interior disjoint \(x \)-monotone curves

Define a total order \(< \) as follows [Guibas & Yao ’80]:

\[cv_i \prec cv_j \iff cv_i(x) < cv_j(x) \text{ for some } x \in x\text{-range}(cv_i) \cap x\text{-range}(cv_j) \]

- Extend \(\prec^+ \) (the transitive closure of \(\prec \)) to a total order \(< \):
 \[cv_i < cv_j \iff (cv_i \prec^+ cv_j) \text{ or } (\neg(cv_j \prec^+ cv_i) \text{ and } (cv_i \text{ left } cv_j)) \]
Reduction from Trapezoids to Rectangles

- \(\text{Rank} : C \rightarrow \{1, \ldots, n\} \) - returns the order of \(cv \in C \) when sorting \(C \) according to \(<\)

A trapezoid \(t \) is reduced to a rectangle \(r \), s.t.:

- \(t \) and \(r \) have the same \(x \)-range
- top and bottom edges of \(r \) lie on \(y = \text{Rank}(\text{top}(t)) \) and \(y = \text{Rank}(\text{bottom}(t)) \), respectively

We show that this reduction preserves the cover depth
Computing the Cover-Depth of a Collection of n Axis-Aligned Rectangles in $O(n \log n)$ Time

- Algorithm by Alt & Scharf (2010)
- Basic data structure: a balanced binary tree for the intervals
- Keep coverage and max-coverage in every node
- Sweep from $y = +\infty$ to $y = -\infty$
- Sweep-line event: rectangle starts or ends
- Update a rectangle event with x-interval (a, b) in $\sim 2 \log n$ time
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

Lemma

The length \mathcal{L} in a linear size DAG can be verified in $O(n \log n)$ time.
An $O(n \log n)$ Verification Algorithm for \mathcal{L}

Lemma
The length \mathcal{L} in a linear size DAG can be verified in $O(n \log n)$ time.

Theorem 2
A point location data structure for a planar subdivision with n edges, which has $O(n)$ size and $O(\log n)$ query time in the worst case, can be built in expected $O(n \log n)$ time.
A Simpler Verification Algorithm for \mathcal{L}

We also suggest a randomized verification algorithm which:

- Runs in expected $O(n \log n)$ time
- Is much simpler
- Uses the existing structures (the DAG)
Outline

- Trapezoidal-map RIC point-location variants
- Depth vs. maximum query path length
- An efficient construction algorithm for static settings
- Open Problems
A Major Open Problem

- Suppose that the structure is rebuilt whenever either the depth D or the size S exceed some thresholds.
- Can we still expect a constant number of rebuilds?
The End