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Two Dimensional Arrangements

Definition (Arrangement)

Given a collection C of curves on a surface, the arrangement A(C) is the
partition of the surface into vertices, edges and faces induced by the
curves of C.

An arrangement
of circles in the
plane.

An arrangement of lines in
the plane.

An arrangement
of great-circle
arcs on a sphere.
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Arrangement Background

Arrangements have numerous applications

robot motion planning, computer vision, GIS, optimization,
computational molecular biology

A planar map of the Boston area showing the top of the arm of cape cod.

Raw data comes from the US Census 2000 TIGER/line data files
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Arrangement 2D Complexity

Definition (Well Behaved Curves)

Curves in a set C are well behaved, if each pair of curves in C intersect at
most some constant number of times.

Theorem (Arrangement in IR
2)

The maximum combinatorial complexity of an arrangement of n
well-behaved curves in the plane is Θ(n2).

The complexity of arrangements induced by n non-parallel lines is Ω(n2).
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Planar Maps

Definition (Planar Graph)

A planar graph is a graph that can be embedded in the plane.

Definition (Planar Map)

A planar map is the embedding of a planar graph in the plane. It is a
subdivision of the plane into vertices, (bounded) edges, and faces.

Theorem (Euler Formula)

Let v, e, and f be the number of vertices, edges, and faces (including the
unbounded face) of a planar map, then v − e + f = 2.

vertices — 25

edges — 56

faces — 33
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Surface Maps
Planar maps generalize to surfaces!

Definition (genus)

A topologically invariant property of a surface defined as the largest
number of nonintersecting simple closed curves that can be drawn on the
surface without separating it.

Theorem (Euler Formula)

Let v, e, and f be the number of vertices, edges, and faces of a map
embedded on a surface with genus g, then v − e + f = 2 − 2g.

If each face is incident to at least 3 edges =⇒ 3f ≤ 2e

3v − 3e + 3f = 6 − 6g ≤ 3v − 3e + 2e

e ≤ 3v − 6 + 6g

In a planar triangulation e = 3v − 6, f = 2v − 4
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The Doubly-Connected Edge List

One of a family of
combinatorial data-structures
called the halfedge
data-structures.

Represents each edge using a
pair of directed halfedges.

Maintains incidence relations
among cells of 0 (vertex), 1
(edge), and 2 (face)
dimensions.

v1

v2

eprev

enext

e
e′

f0

f1

f2

f3

f4

u1

u2

The target vertex of a halfedge and the halefedge are incident to each other.

The source and target vertices of a halfedge are adjacent.
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The Doubly-Connected Edge List Components

Vertex

An incident halfedge pointing at the vertex.

Halfedge

The opposite halfedge.
The previous halfedge in the component boundary.
The next halfedge in the component boundary.
The target vertex of the halfedge.
The incident face.

Face

An incident halfedge on the outer Ccb.
An incident halfedge on each inner Ccb.

Connected component of the boundary (Ccb)

The circular chains of halfedges around faces.
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Arrangement Representation

The halfedges incident to a vertex form a circular list.

The halfedges are sorted in clockwise order around the
vertex.

The halfedges around faces form circular chains.

All halfedges of a chain are incident to the same face.

The halfedges are sorted in counterclockwise order along
the boundary.

Geometric interpretation is added by classes built on top of the
halfedge data-structure.
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Modifying the Arrangement

v1 v2

f

v

u

Inserting a curve that induces
a new hole inside the face f ,
a r r . i n s e r t _ i n _ f a c e _ i n t e r i o r ( c , f ) .

Inserting a curve from an existing vertex u
that corresponds to one of its endpoints,
i n s e r t _ f r o m _ l e f t _ v e r t e x ( c , v ) ,
i n s e r t _ f r o m _ r i g h t _ v e r t e x ( c , v ) .

v1

v2

h1

f f ′

h2

Inserting an x -monotone curve, the endpoints
of which correspond to existing vertices v1
and v2, i n s e r t _ a t _ v e r t i c e s ( c , v1 , v2 ) .

The new pair of halfedges close a new face f ′.

The hole h1, which belonged to f before the
insertion, becomes a hole in this new face.
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Application: Obtaining Silhouettes of Polytopes

Application

Given a convex polytope P obtain the outline of the shadow of P cast on
the xy-plane, where the scene is illuminated by a light source at infinity
directed along the negative z-axis.

The silhouette is represented as an arrangement with two faces:

an unbounded face and
a single hole inside the unbounded face.

x

y

An icosahedron and its silhouette.
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Application: Obtaining Silhouettes of Polytopes: Insertion

Insert an edge into the arrangement only once to avoid overlaps.

Maintain a set of handles to polytope edges the projection of which
have already been inserted into the arrangement.
Implemented with the s td : : s e t data-structure.

⋆ Requires the provision of a model of the StrictWeakOrdering.
⋆ A functor that compares handles:
✞ ☎

s t r u c t Less_than_hand le {
t e mp la t e <typename Type>
b o o l o p e r a t o r ( ) ( Type s1 , Type s2 ) c o n s t { r e t u r n (&(∗ s1 ) < &(∗ s2 ) ) ; }

} ;
✝ ✆

s td : : s e t <Po lyhed ron_ha l f edge_cons t_hand le , Less_than_handle >}

Determine the appropriate insertion routines.

Maintain a map that maps polyhedron vertices to corresponding
arrangement vertices.
Implemented with the s td : : map data-structure.

s td : : map<typename Po lyhed ron : : Vertex_const_hand le ,
typename Arrangement : : Vertex_hand le , Less_than_handle >
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Application: Obtaining Silhouettes of Polytopes:
Construction

Obtain the arrangement A that represents the silhouette of a Convex Polytope P

1. Construct the input convex polytope P.
2. Compute the normals to all facets of P.
3. for each facet f of P

4. if f is facing upwards (has a positive z component)
5. for each edge e on the boundary of f

6. if the projection of e hasn’t been inserted yet into A

7. Insert the projection of e into A.

Computes the normal to a facet.
✞ ☎

s t r u c t Normal_equat ion {
t e mp la t e <typename Facet> typename Facet : : Plane_3 o p e r a t o r ( ) ( Facet & f ) {

typename Facet : : Ha l f edge_hand le h = f . h a l f e d g e ( ) ;
r e t u r n CGAL : : c r o s s _ p ro d u c t ( h−>next()−> v e r t e x ()−> p o i n t ( ) −

h−>v e r t e x ()−> p o i n t ( ) ,
h−>next()−>next()−> v e r t e x ()−> p o i n t ( ) −
h−>next()−> v e r t e x ()−> p o i n t ( ) ) ;

}
} ;
✝ ✆
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