Exercise 2.1 The pockets of a simple polygon are the areas outside the polygon, but inside its convex hull. Let P_1 be a simple polygon with n_1 vertices, and assume that a triangulation of P_1 as well as of its pockets is given. Let P_2 be a convex polygon with n_2 vertices. Show that the intersection $P_1 \cap P_2$ can be computed in $O(n_1 + n_2)$ time. (CGAA Ex. 3.12)

Exercise 2.2 The stabbing number of a triangulation of a simple polygon P is the maximum number of diagonals intersected by any line segment interior to P. Give an algorithm that computes a triangulation of a convex polygon that has stabbing number $O(\log n)$.

Exercise 2.3 Prove that the following polyhedron \mathcal{P} cannot be tetrahedralized using only vertices of \mathcal{P}, namely its interior cannot be partitioned into tetrahedra whose vertices are selected from the vertices of \mathcal{P} (see the enclosed figure).

Let a, b, c be the vertices (labeled counterclockwise) of an equilateral triangle in the xy-plane. Let a', b', c' be the vertices of abc when translated up to the plane $z = 1$. Define an intermediate polyhedron \mathcal{P}' as the hull of the two triangles including the diagonal edges ab', bc', and ca', as well as the vertical edges aa', bb', and cc', and the edges of the two triangles abc and $a'b'c'$. Now twist the top triangle $a'b'c'$ by 30° in the plane $z = 1$, rotating and stretching the attached edges accordingly: this is the polyhedron \mathcal{P}.

![Diagram](image)

Figure 1: The untetrahedralizable polyhedron is constructed by twisting the top of a triangular prism (a) by 30° degrees, producing (b), shown in top view in (c)

Notice that there are additional exercises on the other side of the page.

1This construction is due to Schönhardt, 1928. The description here is taken from O’Rourke’s *Art Gallery Theorems and Algorithms*.
Exercise 2.4 Let P be a simple polygon with n vertices and let G be a set of k points inside P, which are the placements of cameras. Give an algorithm to determine whether the cameras in G cover the polygon P (in the “art-gallery” sense). Analyze the complexity of your algorithm.

Exercise 2.5 On n parallel railway tracks n trains are going with constant speeds v_1, v_2, \ldots, v_n. At time $t = 0$ the trains are at positions k_1, k_2, \ldots, k_n. Give an $O(n \log n)$ time algorithm that detects all trains that at some moment in time are leading.

Exercise 2.α Study the deterministic linear time algorithm for solving two-variable linear programs by Meggido. It is clearly described in Section 7.2.5, TWO-VARIABLE LINEAR PROGRAMMING of the Computational Geometry book by Preparata and Shamos, the 1985 Edition. **No need to submit anything here.**