Outline

1. **Triangulation**
 - Polygon Terms and Definitions
 - The Art Gallery
 - Regularization and Triangulation
 - Literature
Definition (Polygon)

A *polygon* is a region of the plane bounded by a finite collection of line segments forming a simple close curve.

Theorem (Jordan Curve Theorem)

If C is a simple closed curve in \(\mathbb{R}^2 \), then \(\mathbb{R}^2 \setminus C \) has two components (an "inside" and "outside"), with C the boundary of each.

Definition (Simple Polygon)

A polygon is said to be *simple* (or *Jordan*) if it is enclosed by a single closed polygonal chain that does not cross itself. In particular, the polygon edges are pairwise disjoint in their interior and the degree of all vertices is two.
Polygon Terms & Definitions (Cont.)

The chain v_1, v_2, \ldots, v_n defines a simple polygon iff

1. The segments $s_1 = v_1v_2$, $s_2 = v_2v_3$, \ldots, $s_{n-1} = v_{n-1}v_n$, $s_n = v_nv_1$ are disjoint in their interior.

2. Consecutive segments intersect only in their endpoints. Namely $s_i \cap s_{i+1} = v_{i+1}$, $i = 1, 2, \ldots, n - 1$ and $s_n \cap s_1 = v_1$

3. Non adjacent segments do not intersect $s_i \cap s_j = \emptyset$, $j > i + 1$.

- P — a simple polygon.
- ∂P — the boundary of P.
- $\partial P \subseteq P$, P is closed and contains its boundary.
- By convention the vertices of a polygon are ordered counterclockwise around the interior of the polygon.
 - Interior of polygon is to the left of the boundary.
Outline

1. Triangulation
 • Polygon Terms and Definitions
 • The Art Gallery
 • Regularization and Triangulation
 • Literature
Application: Art Gallery

Application (Art Gallery)

Given the floor plan of an art gallery modeled as a simple polygon with \(n \) vertices. Find out how many (and where) guards are needed to see the entire gallery, where each guard is stationed at a fixed point, has 360° vision, and cannot see through the walls.

Problem posed to Vasek Chvatal by Victor Klee at a math conference in 1973. Chvatal solved it quickly with a complicated proof, which has since been simplified significantly using triangulation.
Art Gallery: Lower Bound

Definition (Seeing)
A (guard) point p sees points $q \in P$ if $pq \subseteq P$.

Definition (Covering)
A set of guards G covers a polygon P if for any point $p \in P$ there is a guard $g \in G$ that sees p.

- $g(P)$ — minimum number of guards guarding P.
 - Cardinality of smallest set that covers P.
- \mathcal{P}_n — set of all simple polygons with n vertices.
- $G(n) = \max_{P \in \mathcal{P}_n} g(P)$ — maximum number of guards needed to guard a simple polygon with n vertices.

- $G(n) \geq \lceil n/3 \rceil$
A diagonal of a polygon P is a segment connecting two vertices of P that strictly see each other.

A triangulation is a partition of P into triangles formed by repeatedly inserting diagonals into P.

A vertex is strictly convex if its interior angle $\alpha < \pi$.

The interior angle of a reflex convex is $\alpha > \pi$.

Every polygon has at least one strictly convex vertex, e.g., the lexicographically smallest vertex v.

Every polygon with $n > 3$ vertices has a diagonal.

Every polygon may be partitioned into triangles by the addition of (0 or more) diagonals.

Proof by induction.

T — a triangulation of a polygon P of n vertices.

T uses $n - 3$ diagonals and consists of $n - 2$ triangles.
Art Gallery: Upper Bound (Cont.)

- The dual of a triangulation T is a graph $G(T)$ with a node associated with each triangle and an arc between two nodes iff their triangles share an edge.
- The dual graph $G(T)$ is a tree with a vertex degree at most 3.
- 3 consecutive vertices u, v, w, form an ear if uw is a diagonal
 - v is the ear tip.
- Every polygon of $n > 3$ has at least 2 non-overlapping ears.
- The graph of the triangulation $T(P)$ is three colorable.
- Every simple polygon P with n vertices can be guarded using $\leq \lfloor n/3 \rfloor$ guards; $G(n) \leq \lfloor n/3 \rfloor$.
- Compute the triangulation of P.
- Compute a 3 coloring for $T(P)$.
- Choose the smallest set of vertices with the same color.
 - Its cardinality must be $\leq \lfloor n/3 \rfloor$.
Art Gallery: Minimum Number of Guards

- A 3-coloring of the vertices yields 3 guards.
- However, the polygon can be guarded by only 2 guards.
- Finding the minimum number of guards is NP-hard.

Problem (Art Gallery Decision)

Given both a polygon and a number k, determine whether the polygon can be guarded with k or fewer guards.

- Even the decision problem and all of its standard variations (such as restricting the guard locations to vertices or edges of the polygon) is NP-hard.
Art Gallery in \mathbb{R}^3

- Even n-vertex guards do not suffice!
- Different triangulations can have different number of tetrahedra.
- Determining whether a polyhedron requires Steiner vertices for triangulation is NP-Complete.
 - Smallest example of a polyhedron that cannot be triangulated without adding new vertices. (Schoenhardt [1928]).
- Every 3D polyhedron with n vertices can be triangulated with $O(n^2)$ tetrahedra. [Cha84]
Outline

1 Triangulation
 • Polygon Terms and Definitions
 • The Art Gallery
 • Regularization and Triangulation
 • Literature
Check all n^2 choices for a diagonal, each in $O(n)$ time. Repeat this $n - 1$ times, $O(n^4)$.

Find an ear in $O(n)$ time; then recurse, $O(n^2)$ time.

First non-trivial algorithm: $O(n \log n)$. \[\text{[GJP}^+78]\]

A long series of papers and algorithms in 80s until Chazelle produced an optimal $O(n)$ algorithm. \[\text{[Cha91]}\]

Linear time algorithm insanely complicated; there are randomized, expected linear time algorithm that are more accessible.
Regularization and Triangulation Algorithm Outline

Definition (Monotone Polygonal Chain)
A polygonal chain C is **monotone** w.r.t. line L if any line orthogonal to L intersects C in at most one point.

Definition (Monotone Polygon)
A polygon is monotone w.r.t. L if it can be decomposed into two chains, each monotone w.r.t. L.

- Partition polygon into trapezoids.
- Use trapezoids to make a monotone subdivision.
- Triangulate each monotone piece.

[？]+78

An x-monotone polygon
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. \bullet — merge vertex
2. \bigcirc — split vertex
3. \bullet — start vertex
4. \bullet — end vertex
5. \bigcirc — regular vertex
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. ○ — merge vertex
2. ○ — split vertex
3. ● — start vertex
4. ● — end vertex
5. ○ — regular vertex
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. \bigcirc — merge vertex
2. \circ — split vertex
3. \bullet — start vertex
4. \bullet — end vertex
5. \bigcirc — regular vertex
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. *merge vertex*
2. *split vertex*
3. *start vertex*
4. *end vertex*
5. *regular vertex*
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. \bullet — merge vertex
2. \circ — split vertex
3. \bullet — start vertex
4. \bullet — end vertex
5. \circ — regular vertex
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. o — merge vertex
2. ○ — split vertex
3. ● — start vertex
4. ● — end vertex
5. ● — regular vertex
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. ○ — merge vertex
2. ○ — split vertex
3. ● — start vertex
4. ● — end vertex
5. ○ — regular vertex
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. ○ → merge vertex
2. ○ → split vertex
3. ● → start vertex
4. ● → end vertex
5. ○ → regular vertex

Triangulation
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. ○ — merge vertex
2. ● — split vertex
3. ● — start vertex
4. ● — end vertex
5. ○ — regular vertex
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. ○ — merge vertex
2. ○ — split vertex
3. ● — start vertex
4. ● — end vertex
5. ● — regular vertex
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. ○ — *merge vertex*
2. ○ — *split vertex*
3. ● — *start vertex*
4. ● — *end vertex*
5. ○ — *regular vertex*
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. ○ — merge vertex
2. ○ — split vertex
3. ■ — start vertex
4. ● — end vertex
5. ♦ — regular vertex
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. — *merge vertex*
2. — *split vertex*
3. — *start vertex*
4. — *end vertex*
5. — *regular vertex*
Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
 - Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. \circ — merge vertex
2. \circ — split vertex
3. \bullet — start vertex
4. \bullet — end vertex
5. \bullet — regular vertex
Lemma (x-monotone)

A polygon is x-monotone if it has no split vertices and no merge vertices.

- Suppose P is a non x-monotone polygon.
- We have to prove that P contains a split or a merge vertex.

q — the top endpoint of $\ell \cap P$.

p — the bottom endpoint of $\ell \cap P$.

r — the first intersection of ℓ with ∂P starting at q going counterclockwise.

There are two cases

(a) $p = r \Rightarrow \exists$ merge vertex

(b) $p \neq r \Rightarrow \exists$ split vertex
Triangulating Monotone Polygons

Triangulate a monotone polygon P on n vertices.

1. Sort the vertices in lexicographically increasing order to yield v_1, v_2, \ldots, v_n
2. Initialize a stack Γ, push(Γ, v_1, v_2).
3. for $i = 3, \ldots, n$ do
4. if v_i and $v_j = \text{top}(\Gamma)$ on same chain
5. Add diagonals $v_i v_j, \ldots, v_i v_k$, where v_k is last to admit legal diagonal.
6. $v_{k+1}, \ldots, v_j = \text{pop}(\Gamma)$.
7. push(Γ, v_i).
8. else
9. Add diagonals from v_i to all vertices on stack.
10. $v_j = \text{pop}(\Gamma)$.
11. clear(Γ).
12. push(Γ, v_j, v_i).

Case I

$\Gamma : v_{\text{bot}}, \ldots, v_{\text{top}}$

<table>
<thead>
<tr>
<th>v_{bot}</th>
<th>v_k</th>
<th>v_{top}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>v_i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v_{bot}</th>
<th>v_k</th>
<th>v_{top}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>v_i</td>
</tr>
</tbody>
</table>

Case II

$\Gamma : v_{\text{bot}}, \ldots, v_{\text{top}}$

<table>
<thead>
<tr>
<th>v_{bot}</th>
<th>v_k</th>
<th>v_{top}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>v_i</td>
</tr>
</tbody>
</table>

Diagram of Case I and Case II showing the triangulation process.
Triangulating Monotone Polygons

Triangulate a monotone polygon P on n vertices.

1. Sort the vertices in lexicographically increasing order to yield v_1, v_2, \ldots, v_n.
2. Initialize a stack Γ, push(Γ, v_1, v_2).
3. for $i = 3, \ldots, n$ do
4. if v_i and $v_j = \text{top}(\Gamma)$ on same chain
5. I $\{$
6. Add diagonals $v_i v_j, \ldots, v_i v_k$, where v_k is last to admit legal diagonal.
7. $v_{k+1}, \ldots, v_j = \text{pop}(\Gamma)$.
8. push(Γ, v_i).

9. else
10. II $\{$
11. Add diagonals from v_i to all vertices on stack.
12. $v_j = \text{pop}(\Gamma)$.
13. clear(Γ).
14. push(Γ, v_j, v_i).

Case I

Case II

\(\Gamma : v_{\text{bot}}, \ldots, v_{\text{top}}\)}
Triangulate a monotone polygon P on n vertices.

1. Sort the vertices in lexicographically increasing order to yield v_1, v_2, \ldots, v_n
2. Initialize a stack Γ, push(Γ, v_1, v_2).
3. for $i = 3, \ldots, n$ do
4. if v_i and $v_j = \text{top}(\Gamma)$ on same chain
5. I Add diagonals $v_i v_j, \ldots, v_i v_k$, where v_k is last to admit legal diagonal.
6. $v_{k+1}, \ldots, v_j = \text{pop}(\Gamma)$.
7. push(Γ, v_i).
8. else
9. II Add diagonals from v_i to all vertices on stack.
10. $v_j = \text{pop}(\Gamma)$.
11. clear(Γ).
12. push(Γ, v_j, v_i).

Case I

Γ : $v_{\text{bot}}, \ldots, v_k, v_i$

Case II

Γ : $v_{\text{bot}}, \ldots, v_{\text{top}}$
Triangulating Monotone Polygons

Triangulate a monotone polygon P on n vertices.

1. Sort the vertices in lexicographically increasing order to yield v_1, v_2, \ldots, v_n
2. Initialize a stack Γ, push(Γ, v_1, v_2).
3. for $i = 3, \ldots, n$ do
 4. if v_i and $v_j = \text{top}(\Gamma)$ on same chain
 5. I Add diagonals $v_i v_j, \ldots, v_i v_k$, where v_k is last to admit legal diagonal.
 6. $v_{k+1}, \ldots, v_j = \text{pop}(\Gamma)$.
 7. push(Γ, v_i).
 8. else
 9. II Add diagonals from v_i to all vertices on stack.
 10. $v_j = \text{pop}(\Gamma)$.
 11. clear(Γ).
 12. push(Γ, v_j, v_i).

\[\text{Case I: } \Gamma : v_{\text{bot}}, \ldots, v_k, v_i \]
\[\text{Case II: } \Gamma : v_{\text{bot}}, \ldots, v_{\text{top}} \]
Triangulating Monotone Polygons

Triangulate a monotone polygon P on n vertices.

1. Sort the vertices in lexicographically increasing order to yield v_1, v_2, \ldots, v_n.
2. Initialize a stack Γ, push(Γ, v_1, v_2).
3. for $i = 3, \ldots, n$ do
 4. if v_i and $v_j = \text{top}(\Gamma)$ on same chain
 5. I Add diagonals $v_i v_j, \ldots, v_i v_k$, where v_k is last to admit legal diagonal.
 6. $v_{k+1}, \ldots, v_j = \text{pop}(\Gamma)$.
 7. $\text{push}(\Gamma, v_i)$.
6. else
 7. II $\text{Add diagonals from } v_i \text{ to all vertices on stack.}$
 8. $v_j = \text{pop}(\Gamma)$.
 9. $\text{clear}(\Gamma)$.
 10. $\text{push}(\Gamma, v_j, v_i)$.

Case I

```
\[ \Gamma : v_{\text{bot}}, \ldots, v_k, v_i \]
```

Case II

```
\[ \Gamma : v_j, v_i \]
```
Regularization and Triangulation Algorithm Complexity

- Regularization via plane sweep takes $O(n \log n)$ time.

- Triangulation
 - Sorting by merging the two monotone chains of P takes $O(n)$ time.
 - A vertex is added to stack once. Once it’s visited during a scan, it’s removed from the stack.
 - In each step, at least one diagonal is added; or the reflex stack chain is extended by one vertex.
 - Triangulating a monotone polygon takes $O(n)$ time.

- Total time for polygon triangulation is therefore $O(n \log n)$.
Outline

1. Triangulation
 - Polygon Terms and Definitions
 - The Art Gallery
 - Regularization and Triangulation
 - Literature
Triangulation Bibliography I

B. Chazelle.
Triangulating a Simple Polygon in Linear Time.

Triangulating a Simple Polygon.

An $O(n \log \log(n))$ Time Algorithm for Triangulating a Simple Polygon.

Mark de Berg, Mark van Kreveld, Mark H. Overmars, and Otfried Cheong.
Computational Geometry: Algorithms and Applications.

Alexey V. Skvortsov, Yuri L. Kostyuk
Efficient algorithms for Delaunay triangulation.

Bernard Chazelle.
Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm.

Michael J. Laszlo.
Computational Geometry and Computer Graphics in C++.
Prentice-Hall, 1996