Triangulation

Efi Fogel
Tel Aviv University
Computational Geometry
Mar. 3rd, 2014

Outline

1 Triangulation
Polygon Terms and Definitions
The Art Gallery
Regularization and Triangulation
Literature

Application: Art Gallery

Given the floor plan of an art gallery modeled as a simple polygon with n vertices. Find out how many (and where) guards are needed to see the entire gallery, where each guard is stationed at a fixed point, has 360° vision, and cannot see through the walls.

Problem posed to Vasek Chvatal by Victor Klee at a math conference in 1973. Chvatal solved it quickly with a complicated proof, which has since been simplified significantly using triangulation.

Polygon Terms and Definitions

Definition (Polygon)
A polygon is a region of the plane bounded by a finite collection of line segments forming a simple close curve.

Theorem (Jordan Curve Theorem)
If C is a simple closed curve in \(\mathbb{R}^2 \), then \(\mathbb{R}^2 \setminus C \) has two components (an "inside" and "outside"), with C the boundary of each.

Definition (Simple Polygon)
A polygon is said to be simple (or Jordan) if it is enclosed by a single closed polygonal chain that does not cross itself. In particular, the polygon edges are pairwise disjoint in their interior and the degree of all vertices is two.

Outline

1 Triangulation
Polygon Terms and Definitions
The Art Gallery
Regularization and Triangulation
Literature

Triangulation

Polygon Terms & Definitions (Cont.)
The chain \(v_1, v_2, \ldots, v_n \) defines a simple polygon iff
1. The segments \(s_1 = v_1v_2, s_2 = v_2v_3, \ldots, s_{n-1} = v_{n-1}v_n, s_n = v_nv_1 \) are disjoint in their interior.
2. Consecutive segments intersect only in their endpoints. Namely \(s_i \cap s_{i+1} = v_{i+1}, i = 1, 2, \ldots, n-1 \) and \(s_n \cap s_1 = v_1 \)
3. Non adjacent segments do not intersect \(s_i \cap s_j = \emptyset, j > i + 1 \).

P — a simple polygon.
\(\partial P \) — the boundary of P.
\(\partial P \subseteq P \), P is closed and contains its boundary.
By convention the vertices of a polygon are ordered counterclockwise around the interior of the polygon.
Interior of polygon is to the left of the boundary.

Application: Art Gallery

Application (Art Gallery)

Given the floor plan of an art gallery modeled as a simple polygon with n vertices. Find out how many (and where) guards are needed to see the entire gallery, where each guard is stationed at a fixed point, has 360° vision, and cannot see through the walls.

Problem posed to Vasek Chvatal by Victor Klee at a math conference in 1973. Chvatal solved it quickly with a complicated proof, which has since been simplified significantly using triangulation.
Art Gallery: Lower Bound

Definition (Seeing)
A (guard) point \(p \) sees points \(q \in P \) if \(pq \subseteq P \).

Definition (Covering)
A set of guards \(G \) covers a polygon \(P \) if for any point \(p \in P \) there is a guard \(g \in G \) that sees \(p \).

- \(g(P) \) — minimum number of guards guarding \(P \).
- Cardinality of smallest set that covers \(P \).
- \(P_n \) — set of all simple polygons with \(n \) vertices.
- \(G(n) = \max_{P \in P_n} g(P) \) — maximum number of guards needed to guard a simple polygon with \(n \) vertices.
- \(G(n) \geq \lceil n/3 \rceil \)

Art Gallery: Upper Bound

- A diagonal of a polygon \(P \) is a segment connecting two vertices of \(P \) that strictly see each other.
- A triangulation is a partition of \(P \) into triangles formed by repeatedly inserting diagonals into \(P \).
- A vertex is strictly convex if its interior angle \(\alpha < \pi \).
- The interior angle of a reflex convex is \(\alpha > \pi \).
- Every polygon has at least one strictly convex vertex.
- Every polygon with \(n > 3 \) vertices has a diagonal.
- Every polygon may be partitioned into triangles by the addition of \((0 \text{ or more}) \) diagonals.
- Proof by induction.
- \(T \) — a triangulation of a polygon \(P \) of \(n \) vertices.
- \(T \) uses \(n - 3 \) diagonals and consists of \(n - 2 \) triangles.

Art Gallery: Minimum Number of Guards

- A 3-coloring of the vertices yields 3 guards.
- However, the polygon can be guarded by only 2 guards.
- Finding the minimum number of guards is NP-hard.

Problem (Art Gallery Decision)
Given both a polygon and a number \(k \), determine whether the polygon can be guarded with \(k \) or fewer guards.

- Even the decision problem and all of its standard variations (such as restricting the guard locations to vertices or edges of the polygon) is NP-hard.

Art Gallery in \(\mathbb{R}^3 \)

- Even \(n \)-vertex guards do not suffice!
- Different triangulations can have different number of tetrahedra.
- Determining whether a polyhedron requires Steiner vertices for triangulation is NP-Complete.
 - Smallest example of a polyhedron that cannot be triangulated without adding new vertices. (Schoenhardt [1928]).
 - Every 3D polyhedron with \(n \) vertices can be triangulated with \(O(n^2) \) tetrahedra. [Cha84]

Art Gallery in \(\mathbb{R}^3 \) (Cont.)

- \(G(T) \) is a tree with a vertex degree at most 3.
- \(3 \) consecutive vertices \(u, v, w \), form an ear if \(uvw \) is a diagonal
 - \(v \) is the ear tip.
- Every polygon of \(n > 3 \) has at least 2 non-overlapping ears.
- The graph of the triangulation \(T(P) \) is three-colorable.
- Every simple polygon \(P \) with \(n \) vertices can be guarded using \(\lfloor n/3 \rfloor \) guards; \(G(n) \leq \lfloor n/3 \rfloor \).
- Compute the triangulation of \(P \).
- Compute a 3 coloring for \(T(P) \).
- Choose the smallest set of vertices with the same color.
 - Its cardinality must be \(\lfloor n/3 \rfloor \).

Outlier

- Triangulation
 - Polygon Terms and Definitions
 - The Art Gallery
 - Regularization and Triangulation
 - Literature
Triangulation History

- Check all n^2 choices for a diagonal, each in $O(n)$ time. Repeat this $n - 1$ times, $O(n^2)$.
- Find an ear in $O(n)$ time; then recurse, $O(n^4)$ time.
- First non-trivial algorithm: $O(n \log n)$.
- A long series of papers and algorithms in 80s until Chazelle produced an optimal $O(n)$ algorithm. [Cha91]
- Linear time algorithm insanely complicated; there are randomized, expected linear time algorithm that are more accessible.

Regularization and Triangulation Algorithm Outline

Definition (Monotone Polygonal Chain)
A polygonal chain C is monotone w.r.t. line L if any line orthogonal to L intersects C in at most one point. [GJP+78]

Definition (Monotone Polygon)
A polygon is monotone w.r.t. L if it can be decomposed into two chains, each monotone w.r.t. L.

- Partition polygon into trapezoids.
- Use trapezoids to make a monotone subdivision.
- Triangulate each monotone piece.

Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
- Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology
- Merge vertex
- Split vertex
- Start vertex
- End vertex
- Regular vertex

Partitioning a Polygon into Monotone Pieces

- At each vertex, extend vertical line until it hits a polygon edge.
- Each face of this decomposition is a pseudo trapezoid.
- Use plane sweep algorithm.
 - Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.
Partitioning a Polygon into Monotone Pieces

At each vertex, extend vertical line until it hits a polygon edge.
- Each face of this decomposition is a pseudo trapezoid.
- Time complexity is $O(n \log n)$.
- For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Use plane sweep algorithm.

For each split (resp. merge) vertex v, add a diagonal that connects v to the vertex of its left (resp. right) trapezoid.

Vertex Ontology

1. \bullet — merge vertex
2. \circ — split vertex
3. \triangledown — start vertex
4. \square — end vertex
5. \Box — regular vertex

Vertex Ontology

1. \bullet — merge vertex
2. \circ — split vertex
3. \triangledown — start vertex
4. \square — end vertex
5. \Box — regular vertex

Vertex Ontology

1. \bullet — merge vertex
2. \circ — split vertex
3. \triangledown — start vertex
4. \square — end vertex
5. \Box — regular vertex

Triangulation 19

Triangulation 20

Triangulation 21

Triangulation 22

Triangulation 23

Triangulation 24
Triangulation 25

Regularization and Triangulation Algorithm Proof

A polygon is x-monotone if it has no split vertices and no merge vertices.

Lemma (x-monotone)

- Suppose P is a non x-monotone polygon.
- We have to prove that P contains a split or a merge vertex.
- There are two cases
 - $p = r \Rightarrow \exists$ merge vertex
 - $p \neq r \Rightarrow \exists$ split vertex

Triangulation 26

Triangulation 27

Triangulation 28

Triangulation 29

Triangulation 30
Triangulating Monotone Polygons

1. Sort the vertices in lexicographically increasing order to yield v_1, v_2, \ldots, v_n.
2. Initialize a stack Γ, push(v_1, v_2).
3. for $i = 3, \ldots, n$ do
4. if v_i and v_{i-1} are on opposite sides of v_{i-2}
5. Add diagonal $v_{i-2}v_i$.
6. if v_{i-1} and v_i are on opposite sides of v_{i-2}
7. Add diagonal $v_{i-2}v_{i-1}$.
8. else
9. Add diagonal from v_i to all vertices on stack.
10. Add diagonal from v_i to all vertices on stack.
11. end
12. end

Case I Case II

$\Gamma : v_{bot}, \ldots, v_{top} \Gamma : v_{bot}, \ldots, v_{top}$

11. Clear the stack.
12. Triangulate P.

Outline

1. Triangulation
2. Polygon Terms and Definitions
3. The Art Gallery
4. Regularization and Triangulation
5. Literature

Regularization and Triangulation Algorithm Complexity

- Regularization via plane sweep takes $O(n \log n)$ time.
- Triangulation
 - Sorting by merging the two monotone chains of P takes $O(n)$ time.
 - A vertex is added to stack once. Once it's visited during a scan, it's removed from the stack.
 - In each step, at least one diagonal is added; or the reflex stack chain is extended by one vertex.
- Triangulating a monotone polygon takes $O(n)$ time.
- Total time for polygon triangulation is therefore $O(n \log n)$.
Triangulation Bibliography I

B. Chazelle.
Triangulating a Simple Polygon in Linear Time.

Triangulating a Simple Polygon.

An \(O(n \log \log n)\) Time Algorithm for Triangulating a Simple Polygon.

Mark de Berg, Mark van Kreveld, Mark H. Overmars, and Otfried Cheong.

Alexey V. Skvortsov, Yuri L. Kostyuk.
Efficient algorithms for Delaunay triangulation.

Bernard Chazelle.
Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm.

Michael J. Laszlo.
Prentice Hall, 1996.