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Abstract

We consider the problem of bounding the combinatorial complexity of a sin�
gle cell in an arrangement of n low�degree algebraic surface patches in ��space�
We show that this complexity is O�n����� for any � � �� where the constant of
proportionality depends on � and on the maximum degree of the given surfaces
and of their boundaries� This extends several previous results� almost settles
a 	�year�old open problem� and has applications to motion planning of gen�
eral robot systems with three degrees of freedom� As a corollary of the above
result� we show that the overall complexity of all the three�dimensional cells
of an arrangement of n low�degree algebraic surface patches� intersected by an
additional low�degree algebraic surface patch � �the so�called zone of � in the
arrangement� is O�n����� for any � � �� where the constant of proportionality
depends on � and on the maximum degree of the given surfaces and of their
boundaries�

� Introduction

Let � � f��� � � � � �ng be a given collection of n low�degree algebraic surface patches
in ��space �see below for a more precise statement of the properties that these sur�
faces are assumed to satisfy�� We denote by A��� the arrangement of �	 i�e�	 the
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decomposition of ��space into �relatively open� cells of various dimensions	 each be�
ing a maximal connected set contained in the intersection of a �xed subcollection of
� and not meeting any other surface� we will denote j�dimensional cells of A���	 for
j � 
� 
� �	 as vertices� edges� and faces	 respectively	 and the unquanti�ed term cell
will be used to denote ��dimensional cells of A���� The combinatorial complexity of
a cell C is the number of lower�dimensional cells appearing on its boundary� The
problem studied in this paper is to obtain a sharp upper bound on the combinatorial
complexity of a single cell in such an arrangement�

One of the main motivations for studying this problem is its applications to robot
motion planning� Let B be an arbitrary robot system with � degrees of freedom	
moving in some environment V �lled with obstacles� Any placement of B can be
represented by a point in ��space	 whose coordinates are the � parameters controlling
the degrees of freedom of B� this space is called the con�guration space of B� We
want to compute the free portion of this space	 denoted as FP 	 and consisting of those
placements of B at which it does not meet any obstacle� We note that the boundary
of FP consists of placements at which B makes contact with some obstacles	 but
does not penetrate into any of them� Under reasonable assumptions concerning B
and V 	 we can represent the subset of �contact placements� of B �including those
placements at which B makes contact with an obstacle but may also penetrate into
other obstacles� as the union of a collection of a �nite number of surface patches	
all algebraic of constant maximum degree �and whose relative boundaries are also
algebraic of constant maximum degree��

For example	 if B is an arbitrary polygonal object with k sides	 and V is an open
planar polygonal region bounded by m edges	 the con�guration space of B is a ��
dimensional space	 each point of which represents a possible placement of B by the
parametrization �x� y� tan �

�
�	 where �x� y� are the coordinates of some �xed reference

point on B	 and � is the orientation of B� In this case	 each �contact surface� is
either the locus of all placements of B at which some speci�c corner of B touches
some speci�c edge of V 	 or the locus of placements at which some side of B touches
some vertex of V � Each of the resulting O�km� contact surfaces is a ��dimensional
algebraic surface patch of degree at most �	 and its relative boundary consists of a
constant number of algebraic arcs	 of constant maximum degree as well�

If B is placed at a free placement Z and moves continuously from Z	 then it
remains free as long as the corresponding path traced in con�guration space does
not hit any contact surface� Moreover	 once this path crosses a contact surface	 B
becomes non�free �assuming	 as is customary	 that the boundaries of B and V lie in
the closure of their interiors	 and that B and V lie in general position�� It follows that
the connected component of FP that contains Z is the cell that contains Z in the
arrangement A��� of the contact surfaces� �The entire FP is the union of a collection
of certain cells in this arrangement�� Hence	 bounding the combinatorial complexity
of a single cell in such an arrangement is a major problem one has to tackle	 prior to
the design of e�cient algorithms for computing such a cell�

Here is a brief history of the single�cell problem� In two dimensions	 it has been
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shown in �
�� that the complexity of a single face in an arrangement of n Jordan
arcs	 each pair of which intersect in at most some constant number	 s	 of points	
is O��s���n��	 where �q�m� is the maximum length of Davenport�Schinzel sequences
of order q composed of m symbols	 and is nearly linear in m for any �xed q �see
�
	 
�� for more details�� Thus the maximum complexity of a single face is nearly
linear in the number of arcs �for any �xed s�	 as opposed to the complexity of the
entire arrangement of the arcs	 which can be quadratic in the worst case� E�cient
algorithms for computing a single face in a two�dimensional arrangement are given in
�
�� and in ����

In higher dimensions	 a prevailing conjecture �see	 e�g�	 ����� is that the complexity
of a single cell in an arrangement A��� as above is at most only slightly larger than
O�nd���	 which is again roughly �one order of magnitude� smaller than the maximum
complexity of the entire arrangement	 which can be ��nd� �see ������ A stronger
version of the conjecture asserts that the maximum complexity of a single cell in
such an arrangement is O�nd���s�n��	 where s is some constant that depends on the
maximum degree of the given surfaces and of their boundaries�

These conjectures have been proved only for a few special cases of arrangements�
They are largely open in the general case stated above� In fact	 no bounds better
than O�nd� are known for the general case	 even in three dimensions� The special
cases for which better bounds are known include the case of hyperplanes	 where the
complexity of a single cell	 being a convex polytope bounded by at most n hyper�
planes	 is O�nbd��c� �by the Upper Bound Theorem �����	 the case of spheres	 where
an O�ndd��e� bound is easy to obtain by lifting the spheres into hyperplanes in �d�
��
space �

	 ���	 the case of �d � 
��simplices	 where an O�nd�� log n� bound has been
recently established in ���	 and several special cases in three dimensions that arise in
motion planning for various speci�c robot systems B with three degrees of freedom	
including the case of a moving polygon mentioned above	 where an O�n���� bound is
proved in �
��	 some restricted cases of that problem	 where slightly more improved
bounds are obtained �
�	 
��	 and a few other systems �see �
����

The single cell problem is a generalization of the related problem of bounding the
complexity of the lower envelope of �	 i�e�	 the portion of the union of the surfaces
of �	 consisting of those points w for which no surface of � passes below w� This
problem	 also rather di�cult	 is nevertheless easier to analyze	 and recent results
�
�	 ��� show that the combinatorial complexity of such an envelope is O�nd�����	 for
any � � 
	 where the constant of proportionality depends on �	 d	 and the maximum
algebraic degree of the given surfaces and of their relative boundaries�

In this paper we derive an improved upper bound for the complexity of a single
cell in an arrangement A��� of algebraic surfaces in ��space	 as above� This bound	
in � dimensions	 is the same as the bound for lower envelopes just mentioned� that
is	 it is O�n����	 for any � � 
	 where the constant of proportionality depends	 as
above	 on � and on the maximum algebraic degree of the given surfaces and of their
relative boundaries� This almost establishes the conjecture mentioned above in three
dimensions�
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Our analysis adapts the proof technique of �
��	 which in turn is based on the
analysis technique of �
�	 ��� for the case of lower envelopes� The lesson one can learn
from the analysis in �
�� is that in the case of a single cell one needs the following two
preliminary results to �bootstrap� the recurrences appearing in the analysis�

�a� a sharp bound on the number of �x�extreme� vertices of the cell C �vertices whose
x coordinate is smallest or largest in a small neighborhood of the vertex within
the closure of C�	 and

�b� a sharp bound on the number of vertices bounding �popular� faces of C �faces
that are adjacent to C on both �sides�� see ��	 �	 
�� and below��

Bounds on these quantities were obtained in �
�� using special properties of the sur�
faces that arise in the case studied there� A main technical contribution of the present
paper is a derivation of such bounds in the general algebraic setting assumed above�
The bound �a� is obtained using considerations which are related to Morse theory �see
e�g� ��
��	 but are simpler to derive in � dimensions� The bound �b� is obtained by
applying the new probabilistic technique of �
�	 
�	 ��� to counting only the vertices
of popular faces �this idea is in the spirit of the methodology used in ��	 ���� Once
these two bounds are available	 the rest of the proof is rather similar to those used in
�
�	 
�	 ���	 although certain additional non�trivial adjustments are required�

The paper is organized as follows� In Section � we give several preliminary results	
including the analysis of the number of x�extreme vertices of a single cell� The main
analysis is presented in Section �� The application of the main result to the zone prob�
lem	 as mentioned in the abstract	 is discussed in Section �	 and the paper concludes
in Section � with further applications of our results and some open problems�

� Preliminaries

Let � � f��� � � � � �ng be a given collection of n surface patches in ��space that satisfy
the following conditions�

�i� Each �i is monotone in the xy�direction �that is	 every vertical line intersects �i
in at most one point�� Moreover	 each �i is a portion of an algebraic surface of
constant maximum degree b�

�ii� The vertical projection of �i onto the xy�plane is a planar region bounded by a
constant number of algebraic arcs of constant maximum degree �say	 b too��

�iii� The relative interiors of any triple of the given surfaces intersect in at most s
points �by Bezout�s theorem ��
� and by Property �iv� below	 we always have
s � b���

�iv� The surface patches in � are in general position� one way of de�ning this is to
require that the coe�cients of the polynomials de�ning the surfaces and their
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boundaries are algebraically independent over the rationals �i�e�	 no multivariate
polynomial with rational coe�cients vanishes when substituting into it some of
the given coe�cients�	 thereby excluding all kinds of �degenerate� con�gurations�
see �
�	 
�	 ��� for more details�

We remark that the somewhat restrictive condition �iv� and the �rst part of condition
�i� are not essential for the analysis� If the �rst part of condition �i� does not hold	 we
can decompose each surface into a constant number of xy�monotone pieces by cutting
it along the locus of points with z�vertical tangency� If condition �iv� does not hold	
we can argue	 by applying	 as in ����	 a small random perturbation of the polynomials	
that the complexity of a single cell in a degenerate arrangement of surfaces is at most
proportional to the worst�case complexity of a single cell in arrangements of surfaces
in general position�

��� The Number of x�Extreme Vertices

We are given a point Z not lying on any surface	 and de�ne C � CZ��� to be the
cell of the arrangement A��� that contains Z� by de�nition	 C is an open set in IR��
Recall the following de�nition �already mentioned above��

De�nition ��� An x�extreme vertex v of the cell C is a vertex whose x coordinate
is smallest or largest in the closure of some connected component of N �C	 where N
is a su�ciently small ball centered at v�

For each x� � IR	 let �x� denote the plane x � x��

De�nition ��� A point w � 	C is said to be critical if there exists a neighborhood
N of w and a connected component K of C � N so that K � �x� is disconnected	
where x� is the x�coordinate of w	 but K ��x is connected either for all x 
 x� or for
all x � x� su�ciently close to x��

Remark� This de�nition is a special case of the de�nition of critical points �of the
coordinate function x� in Morse theory ��
�� Another distinction is that the classical
Morse theory applies to smooth manifolds	 whereas here 	C is generally non�smooth�

The main result of this section is�

Theorem ��� The number of x�extreme vertices of C is O�n���

Proof� We �rst claim that the number of x�extreme vertices of C is proportional to

 plus the number of critical points of C� We prove this by an argument borrowed
from ���� We then show that the number of critical points of C is O�n�� and by that
complete the proof of the theorem� These two steps are achieved	 respectively	 in the
two following lemmas�
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Lemma ��� The number of x�extreme vertices of C is proportional to � plus the
number of critical points of C�

Proof� We sweep C by moving the plane �x in the direction of increasing x	 and keep
track of the number I of connected components of C � �x� This number is initially
�at x � ��� O�n��	 since this is an upper bound on the overall complexity of any
planar cross section of the entire arrangement A���� The number I increases by 

when �x sweeps through a local x�minimum of C	 or when a connected component
of C � �x splits into two subcomponents� I decreases by 
 when � sweeps through
a local x�maximum of C	 or when two components of C � �x merge into a single
component� �The general position assumption implies that only two components can
merge into	 or split from	 a component of C at any given x�� The number of events
at which components can split or merge is equal	 by de�nition	 to the number Q of
critical points of C�

Consider the following dynamic scheme for assigning weights to components of
C � �x� Initially	 at x � ��	 we assign weight �
 to each component of C � �x�
When �x sweeps through a local x�minimum point of C	 a new component of C � �x
is created	 and is also assigned weight �
� When two components of C � �x merge	
we assign to the new component weight equal to � plus the sum of the weights of
the merged components� When a component shrinks and disappears	 its �nal weight
is added to a global count M � When a component is split into two subcomponents	
each of them is assigned weight 
 � w

�
	 where w is the weight of the split component�

We claim that	 at any given time during the sweep	 the weight of any component
of C��x is always at least �
	 and the weight of a component that was formed by one
or more preceding splitting and merging operations is non�negative� Both claims are
easy to prove by induction on the sweep events� If C has no critical points then it has
at most one local x�minimum and at most one local x�maximum	 and the claim holds
trivially in this case� so suppose C does have critical points� In this case it is easily
veri�ed	 using induction on the sweep events	 that the weight of each component of
C � �x that shrinks to a point as we reach a local x�maximum of C is nonnegative	
so the value of M is always nonnegative� Similarly	 all components that survive as x
reaches �� have nonnegative weight�

Suppose that	 at some point during the sweep	 there are sx local x�minima of C
to the left of �x	 that C � ��� has t components	 that the number of splittings and
mergings of cross�sectional components to the left of �x is Qx � Q	 and that the
current value of the count M is Mx� Then	 as is easily veri�ed by the de�nition of
weights and by induction on the sweep events	 the total weight of the components
of C � �x plus Mx is equal to �Qx � sx � t� Hence	 since at x � �� the total
weight of the components of C � �x plus Mx is nonnegative	 we have �Q� s� t � 
	
where s is the total number of local x�minima of C� This implies that s � �Q� A
symmetric argument applies to the number of local x�maxima of C	 and thus the
claim is established� �

Lemma ��	 The number of critical points of C is O�n���
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Proof� For any �xed surface � � �	 the general position assumption is easily seen
to imply that there are only O�
� critical points that lie only on � and on no other
surface	 so the total number of such points	 over all � � �	 is only O�n�� The number
of critical points that lie on the boundary of one surface of � and on a second surface	
summed over all pairs of such surfaces	 is only O�n��� This follows from Bezout�s
theorem applied to the number of intersections between an algebraic surface and an
algebraic arc	 in combination with our basic assumptions �i�	�ii�	 and �iv� about the
surface patches in ��

Consider next critical points that lie in the relative interior of an intersection curve
�ij � �i��j	 for some pair of surfaces �i	 �j � � and on no other surface of �� If such
a point w is a singular point� on	 say �i	 then w is an intersection point between �j
and the curve of singular points on �i	 and	 by the general position assumption	 the
number of such points	 over all pairs �i	 �j � �	 is clearlyO�n��� We thus may assume
that w is nonsingular on both surfaces	 and	 by the general position assumption	 that
�i and �j meet transversally at w� But then the criticality of w is easily seen to imply
that the tangent vector to �ij at w must be orthogonal to the x�axis	 and the number
of points on �ij with this property is O�
� �under the general position assumption��
Hence the total number of such points	 over all pairs �i	 �j � �	 is also O�n���

Finally	 suppose that w is a critical point that is also a point of intersection of
three surfaces �i	 �j	 �k � �� Arguing as above	 we can rule out the case where w
is singular on either of these surfaces� Consider now the three intersection curves
�i � �x� � �i	 �j � �x� � �j	 �k � �x� � �k	 where x� is the x�coordinate of w� These
curves meet at w	 they are all smooth at w	 and K � �x� lies on a single side of each
of the curves� If any two of these curves	 say �i and �j 	 are tangent to each other at
w	 then	 as is easily veri�ed	 the tangent at w to the curve �i��j is orthogonal to the
x�axis	 and	 as argued above	 the number of such points w is only O�n��� Otherwise	
K � �x� must be fully contained	 locally near w	 in just one of the six regions into
which these curves split �x� locally near w �see Figure 
�� However	 this is easily seen
to contradict the criticality of w	 and thus implies that the total number of critical
points of C is O�n��	 as asserted� �
This also completes the proof of Theorem ���� �

��� Inner Vertices� Sides and Borders

For the analysis in the following sections	 we need to introduce additional terminology
relating to cells of various dimensions in the arrangement� We call a vertex v of A���
an inner vertex	 if v is formed by the intersection of the relative interiors of three
distinct surfaces of �� Let v be an inner vertex of C � CZ���	 which is incident
to three surfaces ��	 �� and �� that meet transversally at v	 and which is not a
singular point on any of these surfaces� For technical reasons	 we distinguish between
di�erent sides of v	 adapting the notation of �
�� �see also ��	 �	 
���� Formally	 the

�A point v is singular on an algebraic surface in IRd� de�ned by P � 
� for some polynomial P �
if all the partial derivatives �P��xi� for i � �� � � � � d� vanish at v� see ��� �
��
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Figure 
� Transversal non�singular intersection of three surfaces does not give rise to
a critical point

three tangent planes to the surfaces �i at v partition ��space into � octants	 and a
side R of v is any one of these octants� We call the pair �v�R� a ��border� We say that
�v�R� is a 
�border of C if	 when we move from v in any direction that points into
R by any su�ciently small distance	 we enter C� We will be counting the number of
inner 
�borders of C	 which means that we count each vertex v of C with multiplicity	
once for each side of v that lies in C �in the above sense�� We de�ne ���� to be the
number of inner 
�borders on 	CZ���� We also denote by ��n� the maximumpossible
value of ����	 taken over all collections �	 as above	 with a total of n surfaces	 and
over all cells of A����

In the following analysis	 the notion of a side needs also to be extended to edges
and faces bounding C� For an edge e	 formed by the intersection of two surfaces �	 ��	
we can assume �by reasons similar to those used in the preceding arguments� that no
point on e is singular on either of these surfaces	 and that � and �� cross each other
transversally at each point of e� Then at each point z � e	 the plane normal to e at
z is split by the two tangent planes to �	 �� at z into � quadrants� A side of e can be
thought of as a continuous mapping �in the Hausdor� sense� that maps each point
z � e to one of the quadrants at z �or	 rather	 to make the Hausdor� continuity well
de�ned	 to the intersection of such a quadrant with the unit ball around z�� Similarly	
a side of a face f can be de�ned as a continuous mapping from each point z � f to
one of the two unit vectors normal to f at z� If a vertex v is incident to an edge e and
lies on another surface � crossing e transversally	 then a side R of v is consistent with
a side Q of e if the limit of Q�z�	 as z approaches v	 is contained in �the closure of�
R	 and R is the positive cone spanned by the limit of Q�z� and by the vector tangent
to e at z and pointing from z towards e� Consistency between sides of a vertex and
an incident face	 or between sides of an edge and an incident face	 can be de�ned
in a similar manner� If v is a non�singular vertex of A���	 incident to two edges e�	
e�	 which are contained in the same intersection curve of a pair of surfaces	 we say
that a side R� of e� is consistent with a side R� of e� if the two limits of R��z� as z
approaches v along e�	 and of R��z� as z approaches v along e�	 coincide� If R�

�	 R
�
�

are the two sides of v consistent with R�	 R�	 respectively	 we say that R�
� is the side
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Figure �� Ri is the side of ei facing the reader	 for i � 
� �� the sides R�
� and R�

� of
v consistent with R� and R� respectively	 are also facing the reader and are opposite
one another across the surface ��

of v opposite to R�
� across the third surface de�ning v� see Figure �� Given an edge

e and a side R of e	 we say that �e�R� is a ��border of C if	 when we move from any
point z � e in a direction contained in R�z�	 we enter C� Similarly	 we can de�ne
��borders �f�R� of C	 for a face f and a side R of f �

� Complexity of a Single Cell

We concentrate on bounding the number of inner vertices of CZ���	 and later on
justify the use of this reduced measure of complexity� Our main result is�

Theorem ��� The number of inner vertices of CZ��� is O�n����� for any � � 
�
where the constant of proportionality depends on � and on the maximum degree and
shape of the surfaces and of their relative boundaries�

This result will be proved in three stages� Subsections ��
 and ��� will each be
dedicated to analyzing the complexity of a di�erent type of inner vertices� This
analysis will yield recurrences that will then be solved in Subsection ��� to give the
asserted bound� In Subsection ��� we will argue that Theorem ��
 implies a similar
bound on the total complexity of a single cell�

��� The Number of Inner Vertices

Let v be an inner vertex of C � CZ���	 which is incident to three surfaces ��	 ��
and ��� We may assume that v is not a singular point on any of these surfaces	 and
that these surfaces meet transversally at v� If	 say	 v is a singular point of ��	 then
it lies on the algebraic curve of bounded degree consisting of all singular points on
��� The number of intersection points of this curve with	 say ��	 is constant �under
the assumption of general position�	 which implies that the number of such vertices is
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Figure �� The popular face f borders the cell C on both its sides

only O�n��� The assumption concerning transversality is also justi�ed by the general
position assumption�

Let �v�R� be an inner 
�border of C �non�singular	 formed by the transversal
intersection of its three incident surfaces	 say ��	 ��	 ���� The corresponding vertex
v is incident to �at least� three edges of C	 which we denote by e��	 e��	 and e��	
where each eij is a portion of the corresponding intersection curve �ij � �i � �j	 for

 � i 
 j � �� moreover	 each edge eij has a side Rij which is consistent with R	
so that �eij� Rij� is a 
�border of C� If one of these curves	 say ���	 contains two
edges	 e��	 e���	 with respective sides R��	 R�

��	 such that e�� and e��� have v as a
common endpoint	 R�� and R�

�� are consistent with each other	 and both �e��� R���
and �e���� R

�
��� are 
�borders of C	 then	 as is easily seen	 there is a face f on �� which

is incident to v and which forms with both its sides ��borders of C� We call such
a face a popular face of C	 borrowing a notation from ��	 ��� see Figure �� Let us
denote by ���� the maximum number of inner vertices of popular faces bounding a
single cell of A���	 and let ��n� denote the maximum of ����	 over all collections �
of n surfaces as above �with the same s and b�� �Strictly speaking	 a vertex v can
be incident to more than one popular face	 in which case we count it in ���� with
multiplicity	 once for every incident popular face��

A major novel ingredient of the proof is the derivation of a sharp upper bound
on the number of vertices of popular faces of C� in the previous paper �
�� such a
bound was derived using special properties of the surfaces that arose in the speci�c
motion planning application that was studied there� here we apply a new technique
for obtaining the desired bound in general arrangements� First	 in the rest of this
subsection	 we obtain an upper bound for the complexity ��n� in terms of the function
�	 and then	 in the next subsection	 proceed to derive an upper bound for ��n��

Thus	 up to an additive term of ��n�	 it su�ces	 for the bound on ��n� that we
seek	 to consider only inner vertices v �or	 rather	 inner 
�borders �v�R�� which are
not incident to any popular face of C�

Let �v�R� be a 
�border	 and let us continue to follow the notations introduced
above� For each 
 � i 
 j � �	 the curve �ij must contain a maximal relatively�open







x�monotone connected portion 
ij having v as an endpoint	 such that the 
�border
�
ij� R�

ij�	 where R
�
ij is the side of 
ij consistent with Rij	 is disjoint from C� Let zij

denote the other endpoint of 
ij�

We de�ne the index of v	 denoted j�v�	 to be the number of points of intersections
of ��	 ��	 �� which lie to the right of v �i�e�	 with x � x�v��� Clearly	 
 � j�v� � s�
�

We de�ne ��j����	 for j � 
� � � � � s � 
 to be the maximum number of 
�borders
�v�R� of any �xed cell of A���	 whose vertices v are inner vertices of index at most
j� We also de�ne ��j��n� to be the maximum possible value for ��j����	 over all
collections � of n surface patches satisfying conditions �i���iv� �with the same b and
s�� Similarly	 we de�ne ��j����	 for j � 
� � � � � s� 
	 to be the maximum number of
vertices with index at most j of all popular faces bounding any �xed cell of A���	
where each such vertex is counted with multiplicity	 once for every incident popular
face� We also de�ne ��j��n� to be the maximum possible value for ��j����	 over all
collections � of n surface patches satisfying conditions �i���iv� �with the same b and
s��

Our method is to derive a recurrence relationship for ��n�	 by bounding each of
the functions ��j� in terms of ��j��� �with a special handling of ������ the solution of the
resulting system of recurrences will yield the asserted bounds� Note that	 we are in
fact looking for a bound on the quantity ��s����n�	 as each vertex in the arrangement
is of index at most s� 
� The remainder of this subsection is devoted to proving the
following�

Lemma ��� For each j � 
� � � � � s� 
� we have

��j��n� � O�����n��� � ����j��n��� � ����j����n��� � n� � ��j��n�� �

where we put ��j��� � 
 when j � 
�

Proof� Let us �x 
 � j � s�
	 and assume that the vertex v under consideration has
index at most j� First	 there are only at most ��j��n� such vertices that are incident
to popular faces� The other vertices can be classi�ed into several categories� The
�rst two cases	 �a� and �b� below	 are easy to charge directly	 and the total number
of vertices that fall into these categories is shown to be O�n��� The di�culties arise
when the endpoints zij of the three arcs 
ij all lie on the boundary of the cell C� A
more involved charging scheme is needed in these cases �resulting in the more involved
terms in the recurrence�� In case �c� we handle the situation where at least one of
the arcs 
ij is not intersected by the third surface �say	 
�� is not intersected by ����
The remaining case �d� handles the situation where all arcs 
ij are each intersected
by the third surface� Each of the cases �c� and �d� is further divided into subcases
according to certain parameters that are introduced in the analysis�

In more detail	 we assume that the vertex v under consideration is not incident
to any popular face	 and consider the following cases�


a� All three arcs 
ij emerge from v in the direction of increasing x �or all emerge in
the direction of decreasing x�� In this case v is an x�extreme vertex of C	 as is easily
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z��


��v

�� � ��
�� � ��

Figure �� The dotted faces on the surface �� appear on the boundary of C	 and near
both of them C lies	 say	 above ��

checked �using the general position assumption�	 and Theorem ��� implies that the
total number of such vertices �and corresponding 
�borders� is O�n��� We will thus
assume in the sequel that at least one of these arcs emerges from v in the direction
of increasing x	 and at least one arc emerges in the direction of decreasing x�


b� At least one of the arcs 
ij ends at a point zij which is either an endpoint of the
original intersection curve �ij	 or a point of local x�extremum on that curve� We then
charge �v�R� to the point zij	 and note that the number of such points is O�n��	 and
that each such point is charged only a constant number of times in this manner �e�g�	
along 
ij it can be charged at most once for every side of 
ij�	 thus implying that
the number of 
�borders �v�R� of this kind is only O�n��� Again	 in what follows we
assume that this situation does not arise	 which means	 in particular	 that each of
the three endpoints zij is a vertex of C� more precisely	 each zij has a side R�

ij which
lies across the third surface de�ning zij from a side consistent with R�

ij	 such that
�zij� R�

ij� is a 
�border of C� See Figure ��


c� At least one of the arcs 
ij	 say for de�niteness 
��	 is such that 
���fz��g is not
intersected by the third surface ���

De�ne the level of a point w in ��space to be the smallest number of surfaces
of � whose removal makes w belong to the closure of the cell containing Z in the
resulting subarrangement� If w is a vertex of A��� and R is a side of w	 we say that
w �resp� �w�R�� lies at restricted level ��w� � k �resp� ���w�R�� � k� if by removing
k surfaces from �	 none of which is incident to w	 we make w a vertex �resp� make
�w�R� a 
�border� of the cell containing Z in the resulting subarrangement	 and if k
is the smallest number with that property�

Let t denote the number of distinct surfaces of � that intersect 
���fz��g� We �x


�



some threshold parameter � � �j 	 to be de�ned later �we will use a di�erent parameter
for each j�	 and consider the following two subcases�


c�i� t � �� In this case we charge �v�R� to a block of � points of intersection between

�� � fz��g and the surfaces of �	 de�ned as follows� For each surface � intersecting

���fz��g	 choose its point of intersection that lies nearest to v along 
��� We obtain
at least � such designated points	 and we charge �v�R� to the block of the �rst �
designated points	 in their order along 
�� from v� All those points are inner vertices
of A���	 and it is clear that none of these vertices can be charged in this manner
more than a constant number of times �along 
�� each such vertex can be charged at
most twice for each side of 
���� By construction	 each of the charged vertices lies at
restricted level at most �	 as is easily veri�ed� Our goal is thus to obtain an upper
bound for the numberM of inner vertices of A��� that lie at restricted level � �� the
number of 
�borders in the present subcase is O�M����

For this we apply the probabilistic analysis technique of ��	 ���	 in the samemanner
as in �
��� That is	 we choose a random sample R of r � n�� surfaces� of �	 and
construct the arrangement A�R�� Let w be an inner vertex of A��� at restricted
level � � �	 and let Q be a speci�c collection of � surfaces	 none incident to w	 whose
removal makes w a vertex of the cell containing Z� The probability that w shows up
as a vertex of CZ�R� is at least

�
n����
r��

�
�
�
n
r

�
� out of the total number

�
n
r

�
of possible

samples R	 consider those samples that contain the three surfaces forming w and do
not contain any of the � surfaces of Q� for each of these samples �and possibly for
other samples as well�	 w is a vertex of CZ�R�� Hence	 we have

�X
���

�
n����
r��

�
�
n
r

� F� � E���R�� � ��r� �

where E�	� denotes expectation �with respect to R�	 and where F� is the number of
vertices w of A��� at restricted level �� �Note that ��R� counts the number of 
�
borders bounding CZ�R�	 which is clearly an upper bound on the number of vertices
of that cell�� This can be rewritten as

r�r � 
��r � ��

n�n� 
��n� ��
	

�X
���

�n� r��n � r � 
� 	 	 	 �n� r � � � 
�

�n� ���n� �� 	 	 	 �n� �� ��
F� � ��r� �

or �
n� r � � � 


n� � � �

��

	

�
� �X

���

F�

�
A � n�n� 
��n� ��

r�r � 
��r � ��
��r� �

As in ��	 ���	 one easily veri�es that	 for r � n��	 we have

�X
���

F� � O�����n���� �

�Here� and in similar arguments given below� we use the sloppy notation n��� instead of the more
accurate value dn��e� This is done for clarity of exposition� and does not a�ect in any signi�cant
way the bounds that we derive�


�



in other words	 the number of inner vertices of A��� at restricted level � � is
O�����n����	 which in turn implies that the number of inner 
�borders �v�R� of
C in this subcase is O�����n�����


c�ii� t 
 �� In this case	 if we remove these t surfaces from the arrangement	 v
becomes a vertex of a popular face of C� Indeed	 z�� has an appropriately consistent
side R�

�� so that �z��� R
�
��� is a 
�border of C� When we remove the t surfaces crossing


��	 the cell C expands from R�
�� towards v and �reaches� the other side of v consistent

with the side R�
�� of 
��	 making v a vertex of a popular face �on ��� of the cell

containing Z in the reduced arrangement� To exploit this observation	 we apply
the following variant of the preceding random sampling argument� Fix a parameter
r � n��	 and draw a random sample R of r surfaces of �� Let E��R� be the expected
number of vertices inA�R� of index � j which are incident to popular faces of CZ�R�
�counted with the appropriate multiplicity�� By de�nition	 E��R� � ��j��r�� �Note
that the index of a vertex does not change when we pass to a subset R	 as long as
the � surfaces de�ning the vertex belong to R�� Now	 using a similar argument to the
one given above	 the probability that our vertex v will show up as a vertex of such
a popular face of CZ�R� is �

�
n�t��
r��

�
�
�
n
r

�
� of the

�
n
r

�
possible ways of choosing R	

we consider those samples for which ��� ��� �� � R	 and none of the other t surfaces
crossing 
�� is chosen in R� as already noted	 each such choice �and possibly others as
well� will make v appear as a vertex of a popular face of the cell under consideration�
Hence	 we have

�X
t��

�
n�t��
r��

�
�
n
r

� Gt � E��R� � ��j��r� �

where Gt is the number of 
�borders �v�R� in the full arrangement that fall into the
present subcase	 with j�v� � j and with exactly t surfaces crossing the corresponding
arc 
��� Arguing exactly as above	 we obtain	 for r � n��	

�X
t��

Gt � O�����j��n���� �

in other words	 the number of 
�borders in this subcase is O�����j��n�����


d� In the remaining case �which can occur only if j�v� � 
�	 each of the three arcs

ij � fzijg intersects the third surface	 and we consider one of these arc	 call it 
��	
which emanates in the positive x direction� Thus	 the third surface �� intersects

�� � fz��g in at least one point w� if there are several such points �no more than
j by assumption�	 we take w to be the point lying furthest from v along 
��� Let t
denote the number of distinct surfaces of �	 excluding ��	 that intersect 
�� � fz��g�
We consider the following two subcases�


d�i� t � �� In this case we charge �v�R� to a block of � vertices of the full arrangement
A��� which lie along 
��	 in complete analogy to the construction in case �c�i� above	
except that the surface �� is excluded from the construction� Since each such vertex
can be charged in this manner only a constant number of times	 and all these vertices
lie at restricted level � � � 
	 as is easily checked	 it follows	 exactly as above	 that
the total number of 
�borders v in this subcase is O�����n�����


�




d�ii� t 
 �� In this case	 if we remove these t surfaces �without removing ���	 the
point w	 together with a side Rw consistent with R�

��	 must form a 
�border �w�Rw� of
the cell containing Z in the reduced arrangement� Indeed	 recall that we are assuming
that the other endpoint z�� of 
�� forms a 
�border �z��� R�

��� of C	 for a side R
�
�� lying

across a surface from a side consistent with R�
��� By assumption	 the portion of 
��

between w and z�� is not crossed by ��	 so	 when the other t surfaces crossing 
��
are removed	 the cell C expands from the side R�

�� and �reaches� w from z�� along the
side �
��� R�

���� We charge �v�R� to �w�Rw�� Clearly	 each such �w�Rw� is charged in
this manner only a constant number of times�

We next estimate the number of 
�borders �w�Rw� of this kind� We apply a
random�sampling argument similar to those used above� That is	 we �x a parameter
r � n��	 and draw a random sample R of r surfaces of �� Let E���R� be the expected
number of 
�borders �w�Rw� of CZ�R�	 such that w has index � j�
� By de�nition	
E���R� � E���j����R�� � ��j����r��

The probability that the charged 
�border �w�Rw� will show up as such a 
�border

of CZ�R� is �
�
n�t��
r��

�
�
�
n
r

�
� of the

�
n
r

�
possible ways of choosing R	 we consider those

samples for which ��� ��� �� � R	 and none of the other t surfaces crossing 
�� is
chosen in R� each such choice �and possibly other choices too� will make �w�Rw�
appear as a 
�border of CZ�R�	 as argued above� Hence	 we have

�X
t��

�
n�t��
r��

�
�
n
r

� Ht � O�E���R�� � O���j����r�� �

where Ht is the number of 
�borders �v�R� in the full arrangement that fall in the
present subcase	 with j�v� � j and with exactly t surfaces crossing the corresponding
arc 
�� �excluding the corresponding surface ���� Arguing as above	 we obtain	 for
r � n��	

�X
t��

Ht � O�����j����n���� �

in other words	 the number of 
�borders �v�R� in this subcase is O�����j����n�����

Hence	 summing over all cases	 we obtain the following recurrence for ��j� �where	
for j � 
	 we put ��j��� � 
 in the right�hand side��

��j��n� � O�����n��� � ����j��n��� � ����j����n��� � n� � ��j��n�� � �
�

as asserted� �

In order to solve the recurrence �
� we �rst have to bound the functions ��j��n�	
which is done in the next subsection�

��� The Number of Vertices on Popular Faces

To bound the number of such vertices	 we adapt the analysis given above to bound
the functions ��j��n�	 rather than the functions ��j��n��
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Figure �� The setting of Subsection ��
� f is a popular face

Let v be an inner vertex of a popular face f of the cell C� assume that f lies
on a surface � � �	 and that the two other surfaces incident to v are ��� �� � ��
As above	 we may assume that v is non�singular on any of these surfaces	 and that
these surfaces meet transversally at v� Denote the two sides of f by R� and R�� Let
�i � �i � �	 for i � 
� �� Each �i contains an edge ei having v as an endpoint and
bounding f � See Figure � for an illustration� Let R�

i 	 R
�
i 	 for i � 
� �	 denote the

two sides of ei that are consistent with R�	 R�	 respectively�

If	 say �� has another edge e�� incident to v such that �a� e
�
� bounds another popular

face f � on �	 and �b� f and f � share the edge e�	 then e� is a popular edge of C	 meaning
that all four sides of e� lie in C locally near e� �see Figure ��� We claim that the
number of popular edges of C is O�n��� This follows from the observation that	 in
this case	 v must be a locally x�extreme vertex of one of these four sides� �assuming
general position�	 and	 by Theorem ���	 the number of such vertices	 and hence also
the number of popular edges	 is O�n��� Moreover	 if both e� and e� emanate from v
in the positive x�direction	 or if both emanate in the negative x�direction	 then	 as
is easily checked	 v must be a locally x�extreme vertex of one of the two sides of f 	
so the number of such vertices is also O�n��� Hence	 in what follows we may assume
that neither of the edges e�	 e� is adjacent along � to another popular face of C	 and
that one of these edges emanates from v in the positive x�direction and one emanates
in the negative x�direction�

As above	 our method is to derive a recurrence relationship for ��n�	 by bounding
each of the functions ��j� in terms of ��j��� �with a special handling of ������ the
solution of the resulting system of recurrences will yield the asserted bounds� In the
remainder of this subsection we prove the following�

�Strictly speaking� v is locally x�extreme in one of the four portions of C into which these sides
�point�� we allow ourselves here and below this slight abuse of notation�
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Figure �� Two adjacent popular faces f� f �	 giving rise to a popular edge e�

Lemma ��� For each j � 
� � � � � s� 
� we have

��j��n� � O�����n��� � �n� � ����j����n���� �

we put ��j��� � 
 when j � 
�

Proof� Let us �x 
 � j � s � 
	 and assume that the vertex v under consideration
has index � j� By our assumptions	 for i � 
� �	 the curve �i must contain a maximal
relatively�open x�monotone connected portion 
i having v as an endpoint and satis�
fying the following property� let R��

i 	 R��
i be the two sides of 
i which are consistent

with the two respective sides R�
i 	 R

�
i of ei� then 
i does not contain any point at

which both sides R��
i 	 R��

i lie locally in C� Let zi denote the other endpoint of 
i�
By assumption	 one of these arcs	 say 
�	 emanates from v in the positive x�direction
and the other emanates in the negative x�direction�

Several cases can then arise �similar to the analysis in the previous subsection��
Case �a� below deals with vertices that are easy to charge directly	 and their total
number is shown to be O�n��� Case �b� handles situations where 
� is not intersected
by the third surface ��� and in the remaining case �c� the surface �� intersects 
� in
at least one point� Here too the more involved cases �b� and �c� are further divided
into subcases according to certain parameters that are introduced in the analysis�


a� At least one of the arcs 
i ends at a point zi which is either an endpoint of the
original intersection curve �i	 or a point of local x�extremum on that curve� We then
charge v to the point zi	 and note that the number of such points is O�n��	 and that
each such point is charged only a constant number of times in this manner	 thus
implying that the number of vertices v of this kind is only O�n��� In what follows
we assume that this situation does not arise	 which means	 in particular	 that z� is
a vertex of another popular face of C	 whose two sides are consistent with R��

� 	 R��
� 	

respectively�
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Figure �� Cases �b� and �c� of the analysis of vertices of popular faces� f � is also a
popular face


b� 
� � fz�g is not intersected by the third surface ���

De�ne the popularity level of a point w lying on some surface � � � to be the
smallest number of other surfaces of � whose removal makes w lie in a popular face
on � bounding the cell containing Z in the resulting subarrangement� If w is a vertex
of A���	 incident to some face f 
 �	 we say that �w� f� lies at restricted popularity
level p��w� f�� � k if by removing k surfaces from �	 none of which is incident to w	
the face f becomes �after a possible expansion� a popular face �incident to w� of the
cell containing Z in the resulting subarrangement	 and if k is the smallest number
with that property�

Let t denote the number of distinct surfaces of � that intersect 
� � fz�g� We �x
some threshold parameter � � �j	 and consider the following two subcases�


b�i� t � �� In this case we charge the pair �v� f� to a block of � points of intersection
between 
� � fz�g and the surfaces of �	 de�ned as follows� For each surface ��

intersecting 
� � fz�g	 choose its point of intersection that lies nearest to v along 
��
We obtain at least � such designated points	 and we charge �v� f� to the block of the
�rst � designated points	 in their order along 
� from v� All those points are inner
vertices of A���	 and it is clear that none of these vertices can be charged in this
manner more than a constant number of times� By construction	 each of the charged
vertices w	 together with some incident face along �	 lies at restricted popularity
level at most �� the removal of the at most � surfaces intersecting 
� between v and
w �including �� but excluding the surface incident to w� makes the popular face f
expand into a bigger	 still popular face of the cell containing Z	 which has w as a
vertex �see Figure ��� Our goal is thus to obtain an upper bound for the number M
of pairs �w� f �� of inner vertices w of A��� and incident faces f � that lie at restricted
popularity level � �� the number of pairs �v� f� in the present subcase is O�M����

For this we apply an appropriately modi�ed version of the probabilistic analysis
technique used in the previous subsection� That is	 we choose a random sample R
of r � n�� surfaces of �	 and construct the arrangement A�R�� Let �w� f �� be a


�



pair of an inner vertex w of A��� and an incident face f �	 lying on a surface �	 at
restricted popularity level p � �	 and let Q be a speci�c collection of p surfaces	 none
incident to w	 whose removal makes w a vertex of a popular face �containing f �� of
the cell containing Z� The probability that w shows up as such a vertex in A�R� is	

in complete analogy to the preceding analysis	 at least
�
n�p��
r��

�
�
�
n
r

�
� Hence	 we have

�X
p��

�
n�p��
r��

�
�
n
r

� Fp � E���R�� � ��r� �

where E�	� denotes expectation	 and where Fp is the number of vertex�face pairs �w� f ��
of A��� at restricted popularity level p� As in the preceding analysis	 this implies	
for r � n��	

�X
p��

Fp � O�����n���� �

in other words	 the number of inner vertex�face pairs of A��� at restricted popularity
level � � is O�����n����	 which in turn implies that the number of vertices v of
popular faces of C in this subcase is O�����n�����


b�ii� t 
 �� In this case	 if we remove these t surfaces from the arrangement	 v
becomes a vertex of a popular edge of C �namely e� or an appropriate extension of
it�� Indeed �see Figure ��	 z� has two sides	 R��	 R��	 which are consistent with the
two sides of a popular face f � of C having z� as a vertex	 and are also consistent with
the two respective sides R��

� 	 R��
� of 
�� This easily implies that when we remove the

t surfaces crossing 
� � fz�g �not removing ���	 the cell C expands from R�� and R��

towards v and the face f � expands into a bigger	 still popular face which is bounded
by v and by �a possible extension of� its incident edge e�� by de�nition	 this edge
is thus a popular edge of the resulting cell� To exploit this observation	 we apply
the following variant of the preceding random sampling arguments� Fix a parameter
r � n��	 and draw a random sample R of r surfaces of �� Let E��R� be the expected
number of vertices in A�R� that are incident to popular edges of the cell containing Z
in this arrangement� By the preceding analysis	 E��R� � O�r��� Now	 using a similar
argument to the one given above	 the probability that our vertex v will show up as a
vertex of such a popular edge in A�R� is �

�
n�t��
r��

�
�
�
n
r

�
� Hence	 we have

�X
t��

�
n�t��
r��

�
�
n
r

� Gt � E��R� � O�r�� �

where Gt is the number of vertices v in the full arrangement that fall into the present
subcase	 with exactly t surfaces crossing the corresponding arc 
�� Arguing as above	
it follows that	 for r � n��	

�X
t��

Gt � O���r�� � O��n�� �

in other words	 the number of vertices v in this subcase is O��n���
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Figure �� Case �c�ii�� the vertices v and w are both intersections of the same three
surfaces


c� In the remaining case �which can occur only when j�v� � 
�	 the surface ��
intersects 
� � fz�g in at least one point w� if there are several such points �no more
than j by assumption�	 we take w to be the point lying furthest from v along 
�� Let
t denote the number of distinct surfaces of �	 excluding ��	 which intersect 
�� We
consider the following two subcases�


c�i� t � �� In this case we charge the pair �v� f� to a block of � vertices of the
full arrangement A��� which lie along 
�	 in complete analogy to the construction in
case �b�i� above	 except that the surface �� is excluded from the construction� Since
each such vertex can be charged in this manner only a constant number of times	 and
since all these vertices lie at restricted popularity level � � � 
	 as is easily checked	
it follows	 exactly as above	 that the total number of vertices v that are charged in
this way is O�����n�����


c�ii� t 
 �� In this case	 if we remove these t surfaces �without removing ���	
the point w	 together with two appropriate sides R�

w 	 R
�
w 	 consistent with R��

� 	 R��
� 	

respectively	 must be a vertex of a popular face f � of the cell containing Z in the
resulting subarrangement	 so that R�

w and R�
w are consistent with the two sides of f ��

Indeed	 arguing as above	 the other endpoint z� of 
� is a vertex of an appropriate
popular face f �� of C	 and removal of the t other surfaces crossing 
� makes f �� expand
and �reach� w along the appropriate sides� see Figure � for an illustration� We charge
�v� f� to �w� f ��� Clearly	 each such pair �w� f �� is charged in this manner only a
constant number of times�

We next estimate the number of pairs �w� f �� of this kind� We apply a random�
sampling argument similar to those used above� That is	 we �x a parameter r � n��	
and draw a random sample R of r surfaces of �� Let E���R� be the expected number
of vertices w of popular faces f � of CZ�R� which have index � j � 
 �counted with
the appropriate multiplicity�� By de�nition	 E���R� � E���j����R�� � ��j����r��

Arguing as above	 the probability that the charged vertex�face pair �w� f �� will

�




show up as such a vertex in A�R� is �
�
n�t��
r��

�
�
�
n
r

�
� Hence	 we have

�X
t��

�
n�t��
r��

�
�
n
r

� Ht � O�E���R�� � O���j����r�� �

where Ht is the number of vertex�face pairs �v� f� of CZ��� that fall in the present
subcase	 with exactly t surfaces crossing the corresponding arc 
� �excluding the
corresponding surface ���� Again	 for r � n�� this becomes

�X
t��

Ht � O�����j����n���� �

hence	 the number of vertex�face pairs �v� f� in this subcase is O�����j����n�����

Summing over all cases	 we obtain the following recurrence for ��j� �where	 for
j � 
	 we put ��j��� � 
 in the right�hand side��

��j��n� � O�����n��� � �n� � ����j����n���� � ���

as asserted� �

��� Solving the Recurrences

We next proceed to solve the recurrences �
� and ����

����� The Recurrence for ��j�

We start with Equation ���	 �x some � � 
	 and claim that its solution is ��j��n� �
Bjn

���	 for j � 
� � � � � s � 
	 where the constants Bj depend on �	 j	 and on the
maximum degree b� By de�nition	 this implies that ��n� � Bs��n

����

We prove this claim by induction on n� We �rst rewrite ���	 using a di�erent
parameter �j for each j	 as

�����n� � c�����n���� � c��n
�

and ���

��j��n� � c��j��n��j� � c�jn
� � c��j �

�j����n��j� � j � 
� � � � � s� 
�

for appropriate positive constants c	 ��� � � � � �s��� without loss of generality	 we assume
c � 
� We take �� to be su�ciently large	 and put �j � ��

j

� 	 for j � 
� � � � � s� 
� note
that �j � ��j��	 for j � 
� � � � � s � 
� We note that	 by choosing the Bj�s to be
su�ciently large	 we can assume that the claimed bounds hold for all n � ��� �E�g�	
choose the Bj�s to be larger than some appropriate multiple of ��	 and use the fact
that all the quantities we want to estimate are bounded by O�n��	 where the constant

�




of proportionality depends only on the maximum degree b of the surfaces and of their
boundaries��

For n � ��	 we apply the induction hypothesis in the right�hand side of ���	 and
conclude that the asserted bounds continue to hold for n too	 provided that the
following inequalities are satis�ed�

cBs��

���
� c����� � B� �

���

cBs��

��j
�
c�j
���

� c����j Bj�� � Bj � j � 
� � � � � s� 
�

To achieve this	 we choose

B� � �c����� � and Bj �
�j � 
�cj

��j
���B� �

and require that �� be su�ciently large so that ��
s

� � �scs �

The �rst inequality in ��� is equivalent to

scs�� 	 ���B�

��s��
	
c

���
� c����� � B� �

or to
scs

��
s

�

	B� � c����� � B� �

Since scs���
s

� 
 �
�	 the choice of B� is easily seen to satisfy this inequality� The

general inequality in ��� is equivalent to

scs 	 ���B�

��
s

�

	



��
j��

�

�
c�j
���

� c�
�j�����
� 	

jcj��

��
j

�

	 ���B� �
�j � 
�cj

��
j��

�

	 ���B� �

Using again the fact that scs���
s

� 
 �
�
	 the last inequality is easily seen to be implied

by
c�j
���
�

�cj � �
�
����B�

��
j��

�

�

or by
c����

j

���
� �cj �




�
����B� � ���

However	 when j increases	 the left�hand side of ��� decreases	 while the right�hand
side increases �using the assumption that c � 
�� Hence it su�ces to verify ��� for
j � 
	 which trivially holds by the choice of B�� This inductive step completes the
solution of the recurrence for the functions ��j��n��

��



����� The Recurrence for ��j�

We next proceed to solve the recurrences �
�� If we substitute in these equations the
bounds for ��j��n�	 as just obtained	 and use a di�erent threshold parameter �j for
each j	 we can rewrite the recurrences as

�����n� � c�����n���� � c����� B�n
���

and

��j��n� � c��j ��n��j� � c��j�
�j����n��j� � c����j Bjn

��� � j � 
� � � � � s� 
�

for appropriate positive constants c	 ��� � � � � �s�� �not necessarily the same as in the
recurrences for ��� with no loss of generality	 we assume c � 
�

As above	 we �x some � � 
	 and claim that the solution of these equations is
��j��n� � Ajn

���	 for j � 
� � � � � s � 
	 where the constants Aj depend on �	 j	 and
the maximum degree b� By de�nition	 this implies that ��n� � As��n

����

We prove this claim by induction on n� Again	 we take �� to be su�ciently large	
and put �j � ��

j

� 	 for j � 
� � � � � s � 
� By choosing the Aj�s to be su�ciently large	
we can assume	 as above	 that the claimed bounds hold for all n � ���

For n � ��	 we apply the induction hypothesis	 and conclude that the asserted
bounds continue to hold for n too	 provided that the following inequalities are satis�
�ed�

cAs��

���
� c����� B� � A� �

cAs��

��j
� c����j �Aj�� �Bj� � Aj � j � 
� � � � � s� 
�

To achieve this	 we choose

A� � max
��j�s��

�c�jBj

���
� and Aj �

�j � 
�cj

��j
���A� �

and require that �� be su�ciently large so that ��
s

� � �scs �

We leave it to the reader to verify	 in much the same way as above	 that this
choice of coe�cients satis�es the above inequalities� This inductive step completes
the solution of the recurrences for the functions ��j��n�	 and therefore completes the
proof of Theorem ��
�

��� The Overall Result

The overall complexity of a cell C counts the number of vertices	 edges	 and faces of
	C	 each with an appropriate but constant multiplicity� In order to derive the main
result of the paper	 it remains to show that the overall combinatorial complexity of

��



C is dominated asymptotically by the bound	 given in Theorem ��
	 for the number
of its inner vertices�

Note �rst that non�inner vertices of C must arise as intersections of the relative
boundary of one surface with another surface	 so the number of such vertices is only
O�n���

Using rather standard arguments �see	 e�g�	 �
�	 Section ��
��	 one can easily show
that asymptotically	 and up to an additive factor O�n��	 a bound on the number of
vertices in C dominates the number of edges and faces in C� Every bounded edge
and face of 	C can be charged to the point with smallest x�coordinate lying on its
closure� Such a point is either a vertex of C or a locally x�extreme point on one of the
surfaces or on one of their intersection curves� the number of such extreme points is
clearly only O�n��� A similar argument counts the number of unbounded edges and
faces� Since each vertex or extreme point is charged in this manner only a constant
number of times �by our assumption on general position�	 we easily obtain the above
claim� Combined with the observation that the same bound also applies to collections
of surfaces not in general position	 we thus obtain�

Theorem ��� The combinatorial complexity of a single cell in an arrangement of n
algebraic surface patches in ��space� satisfying the conditions 	i
�	iii
� is O�n����� for
any � � 
� where the constant of proportionality depends on �� s and b�

� Zone Complexity

An interesting application of Theorem ��� is to bound the combinatorial complexity
of the zone of a surface in an arrangement of other surfaces in ��space� Speci�cally	
let � be a collection of n algebraic surface patches in ��space	 and let � be another
such surface	 so that the surfaces in � � f�g satisfy conditions �i���iv�� The zone of
� in A��� is the collection of all cells of A��� that are crossed by �� The complexity
of the zone is the sum of the complexities of all its cells�

Theorem ��� The combinatorial complexity of the zone of � in A��� is O�n�����
for any � � 
� where the constant of proportionality depends on �� s and b�

Proof� We extend the idea used in �
�� for the analysis of zones in ��dimensional
arrangements� That is	 assume �rst that � is a connected surface� We cut each �i � �
into a constant number of subpatches along its curve of intersection with �� If we
shrink these subpatches away from each other by a small amount	 all the cells of
the zone become connected to each other	 and form a single cell in the arrangement
of the new patches� Since these patches are easily seen to also satisfy conditions
similar to �i���iv�	 the asserted bound follows� If � is not connected	 it consists of
a constant number of connected components	 and we apply the above argument to
each component separately� �

��



� Conclusion

In this paper we have obtained a near�quadratic bound for the combinatorial com�
plexity of a single cell in an arrangement of n algebraic surface patches of constant
maximum degree	 each bounded by a constant number of algebraic arcs of constant
maximum degree as well� This almost settles a long�standing conjecture	 and pro�
vides a fairly satisfactory extension of the ��dimensional Davenport�Schinzel theory
developed in �
��� Our proof extends recent techniques developed in �
�	 
�	 ���	 all
based on the probabilistic technique of ��	 ��� for deriving bounds on the number of
generalized ��� k��sets� in arrangements�

As noted in the introduction	 our result has immediate applications to the general
motion planning problem with three degrees of freedom� That is	 for rather general
systems with three degrees of freedom	 the combinatorial complexity of the connected
component of the free con�guration space	 consisting of all robot placements which
are reachable from some given initial free placement	 is O�n����	 for any � � 
	 where
n is the number of contact surfaces	 as de�ned in the introduction� This still falls
short of e�cient construction of such a component �in near�quadratic running time	
which is one of the major open problems that we pose in this paper�� However	 at least
we know that the complexity of such a component is nearly an order of magnitude
smaller than the worst�case complexity of the entire arrangement	 and	 in most cases	
also of the entire free con�guration space�

The paper raises several open problems� The �rst one is to design an e�cient algo�
rithm �of near�quadratic complexity� for constructing a single cell in an arrangement
of algebraic surfaces in ��space �in an appropriate �algebraic� model of computation��
One method of doing this is to select a random sample R of r surfaces of �	 for some
large constant r	 construct CZ�R� by brute force	 and decompose it into subcells of
�constant description complexity�� Then	 with high probability	 each of these cells is
crossed by only O�n

r
log r� surfaces of �	 and we can continue the construction recur�

sively within each cell	 in a manner similar to that described in ��	 ���� The problem
that arises here	 however	 is to ensure that the number of resulting subcells be as
small as possible �ideally	 near�quadratic in r�� This is an interesting combinato�
rial subproblem	 which seems to be open	 and considerably harder than the problem
studied in this paper�

Another open problem that the paper raises is to further improve the bound that
we have obtained	 to the conjectured bound ofO�n�s�n��	 or at least toO�n

�polylog�n���
Another open problem is to extend our results to arrangements in d dimensions� We
believe that this is doable	 and are currently exploring this problem� One main sub�
problem here is to extend Theorem ��� to higher dimensions�

Other open problems are to extend our analysis to obtain sharp bounds on the
complexity of many cells in three�dimensional arrangements	 and to derive bounds on
the sum of squares of cell complexities in an entire arrangement� see ��	 �� for related
work�

��



References


�� P�K� Agarwal� M� Sharir and P� Shor� Sharp upper and lower bounds for the length of
general Davenport Schinzel sequences� J� Combin� Theory� Ser� A� 
� ��	�	�� ��������


�� B� Aronov� J� Matou�sek and M� Sharir� On the sum of squares of cell complexities in
hyperplane arrangements� J� Comb� Theory Ser� A �
 ��		��� ��������


�� B� Aronov� M� Pellegrini and M� Sharir� On the zone of a surface in a hyperplane
arrangement� Discrete Comput� Geom� 	 ��		��� ��������


�� B� Aronov and M� Sharir� Triangles in space� or building �and analyzing� castles in
the air� Combinatorica �� ��		��� ��������



� B� Aronov and M� Sharir� Castles in the air revisited� Discrete Comput� Geom� ��
��		��� ��	��
��


�� B� Aronov and M� Sharir� On translational motion planning in ��space� Proc� ��th
ACM Symp� on Computational Geometry ��		���


�� J� Bochnak� M� Coste and M��F� Roy� G�eom�etrie Alg�ebrique R�eelle� Springer�Verlag�
Berlin �	���


�� B� Chazelle� H� Edelsbrunner� L�J� Guibas� M� Sharir and J� Snoeyink� Computing a
face in an arrangement of line segments and related problems� SIAM J� Computing ��
��		��� ����������


	� K� Clarkson and P� Shor� Applications of random sampling in computational geometry�
II� Discrete Comput� Geom� � ��	�	�� ��������


��� M� de Berg� L�J� Guibas and D� Halperin� Vertical decompositions for triangles in
��space� Proc� ��th ACM Symp� on Computational Geometry ��		��� pp� �����


��� H� Edelsbrunner� Algorithms in Combinatorial Geometry� Springer�Verlag� Heidelberg�
�	���


��� H� Edelsbrunner� L�J� Guibas� J� Pach� R� Pollack� R� Seidel and M� Sharir� Arrange�
ments of curves in the plane � Topology� combinatorics� and algorithms� Theoretical
Computer Science 	� ��		��� ��	�����


��� H� Edelsbrunner� R� Seidel and M� Sharir� On the zone theorem in hyperplane ar�
rangements� SIAM J� Computing �� ��		��� ������	�


��� L�J� Guibas� M� Sharir and S� Sifrony� On the general motion planning problem with
two degrees of freedom� Discrete and Comput� Geom� � ��	�	�� �	��
���


�
� D� Halperin� On the complexity of a single cell in certain arrangements of surfaces
related to motion planning� Discrete and Comput� Geom� �� ��		��� �����


��� D� Halperin� Algorithmic Motion Planning via Arrangements of Curves and of Sur�

faces� Ph�D� Dissertation� Computer Science Department� Tel Aviv University� July
�		��

��




��� D� Halperin and M� Sharir� New bounds for lower envelopes in three dimensions� with
applications to visibility in terrains� Discrete and Comput� Geom� �� ��		��� ��������


��� D� Halperin and M� Sharir� Near�quadratic bounds for the motion planning problem
for a polygon in a polygonal environment� Proc� �	th IEEE Symp� on Foundations of

Computer Science ��		��� pp� �����	��


�	� S� Hart and M� Sharir� Nonlinearity of Davenport�Schinzel sequences and of generalized
path compression schemes� Combinatorica � ��	���� �
������


��� R� Hartshorne� Algebraic Geometry� Springer�Verlag� New York �	���


��� M�W� Hirsch� Di
erential Topology� Springer�Verlag� New York �	���


��� P� McMullen� The maximum number of faces of a convex polytope� Mathematika ��
��	���� ��	�����


��� J� Pach and M� Sharir� The upper envelope of piecewise linear functions and the
boundary of a region enclosed by convex plates� Combinatorial analysis� Discrete

Comput� Geom� � ��	�	�� �	����	�


��� R� Pollack and M��F� Roy� On the number of cells de�ned by a set of polynomials�
C�R� Acad� Sci� Paris� t� ���� S�erie I ��		��� 
���
���


�
� J�T� Schwartz and M� Sharir� On the two�dimensional Davenport Schinzel problem� J�
Symbolic Computation �� ��		��� �����	��


��� M� Sharir� On k�sets in arrangements of curves and surfaces� Discrete Comput� Geom�

� ��		��� 
	������


��� M� Sharir� Almost tight upper bounds for lower envelopes in higher dimensions� Dis�
crete and Comput� Geom� �� ��		��� ������
�

��


