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Abstract

We consider the problem of bounding the combinatorial complexity of a sin-
gle cell in an arrangement of n low-degree algebraic surface patches in 3-space.
We show that this complexity is O(n?*¢), for any ¢ > 0, where the constant of
proportionality depends on ¢ and on the maximum degree of the given surfaces
and of their boundaries. This extends several previous results, almost settles
a 9-year-old open problem, and has applications to motion planning of gen-
eral robot systems with three degrees of freedom. As a corollary of the above
result, we show that the overall complexity of all the three-dimensional cells
of an arrangement of n low-degree algebraic surface patches, intersected by an
additional low-degree algebraic surface patch o (the so-called zone of ¢ in the
arrangement) is O(n?*¢), for any ¢ > 0, where the constant of proportionality
depends on ¢ and on the maximum degree of the given surfaces and of their
boundaries.

1 Introduction

Let ¥ = {o1,...,0,} be a given collection of n low-degree algebraic surface patches
in 3-space (see below for a more precise statement of the properties that these sur-
faces are assumed to satisfy). We denote by A(X) the arrangement of X, i.e., the
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decomposition of 3-space into (relatively open) cells of various dimensions, each be-
ing a maximal connected set contained in the intersection of a fixed subcollection of
¥ and not meeting any other surface; we will denote j-dimensional cells of A(Y), for
J = 0,1,2, as vertices, edges, and faces, respectively, and the unquantified term cell
will be used to denote 3-dimensional cells of A(X). The combinatorial complexity of
a cell C' is the number of lower-dimensional cells appearing on its boundary. The
problem studied in this paper is to obtain a sharp upper bound on the combinatorial
complexity of a single cell in such an arrangement.

One of the main motivations for studying this problem is its applications to robot
motion planning. Let B be an arbitrary robot system with 3 degrees of freedom,
moving in some environment V filled with obstacles. Any placement of B can be
represented by a point in 3-space, whose coordinates are the 3 parameters controlling
the degrees of freedom of B; this space is called the configuration space of B. We
want to compute the free portion of this space, denoted as F'P, and consisting of those
placements of B at which it does not meet any obstacle. We note that the boundary
of FP consists of placements at which B makes contact with some obstacles, but
does not penetrate into any of them. Under reasonable assumptions concerning B
and V, we can represent the subset of ‘contact placements’ of B (including those
placements at which B makes contact with an obstacle but may also penetrate into
other obstacles) as the union of a collection of a finite number of surface patches,
all algebraic of constant maximum degree (and whose relative boundaries are also
algebraic of constant maximum degree).

For example, if B is an arbitrary polygonal object with & sides, and V is an open
planar polygonal region bounded by m edges, the configuration space of B is a 3-
dimensional space, each point of which represents a possible placement of B by the
parametrization (x,y, tan %), where (x,y) are the coordinates of some fixed reference
point on B, and # is the orientation of B. In this case, each ‘contact surface’ is
either the locus of all placements of B at which some specific corner of B touches
some specific edge of V, or the locus of placements at which some side of B touches
some vertex of V. Each of the resulting O(km) contact surfaces is a 2-dimensional
algebraic surface patch of degree at most 4, and its relative boundary consists of a
constant number of algebraic arcs, of constant maximum degree as well.

If B is placed at a free placement Z and moves continuously from Z, then it
remains free as long as the corresponding path traced in configuration space does
not hit any contact surface. Moreover, once this path crosses a contact surface, B
becomes non-free (assuming, as is customary, that the boundaries of B and V lie in
the closure of their interiors, and that B and V lie in general position). It follows that
the connected component of FP that contains Z is the cell that contains Z in the
arrangement A(X) of the contact surfaces. (The entire FIP is the union of a collection
of certain cells in this arrangement.) Hence, bounding the combinatorial complexity
of a single cell in such an arrangement is a major problem one has to tackle, prior to
the design of efficient algorithms for computing such a cell.

Here is a brief history of the single-cell problem. In two dimensions, it has been



shown in [14] that the complexity of a single face in an arrangement of n Jordan
arcs, each pair of which intersect in at most some constant number, s, of points,
is O(Asq2(n)), where Aj(m) is the maximum length of Davenport-Schinzel sequences
of order ¢ composed of m symbols, and is nearly linear in m for any fixed ¢ (see
[1, 19] for more details). Thus the maximum complexity of a single face is nearly
linear in the number of arcs (for any fixed s), as opposed to the complexity of the
entire arrangement of the arcs, which can be quadratic in the worst case. Efficient
algorithms for computing a single face in a two-dimensional arrangement are given in

[14] and in [8].

In higher dimensions, a prevailing conjecture (see, e.g., [23]) is that the complexity
of a single cell in an arrangement A(Y) as above is at most only slightly larger than
O(n?"1), which is again roughly ‘one order of magnitude’ smaller than the maximum
complexity of the entire arrangement, which can be O(n?) (see [24]). A stronger
version of the conjecture asserts that the maximum complexity of a single cell in
such an arrangement is O(n?=2),(n)), where s is some constant that depends on the
maximum degree of the given surfaces and of their boundaries.

These conjectures have been proved only for a few special cases of arrangements.
They are largely open in the general case stated above. In fact, no bounds better
than O(n?) are known for the general case, even in three dimensions. The special
cases for which better bounds are known include the case of hyperplanes, where the
complexity of a single cell, being a convex polytope bounded by at most n hyper-
planes, is O(nl%2) (by the Upper Bound Theorem [22]), the case of spheres, where
an O(n!%?1) bound is easy to obtain by lifting the spheres into hyperplanes in (d+1)-
space [11, 25], the case of (d — 1)-simplices, where an O(n?~!logn) bound has been
recently established in [5], and several special cases in three dimensions that arise in
motion planning for various specific robot systems B with three degrees of freedom,
including the case of a moving polygon mentioned above, where an O(n**) bound is
proved in [18], some restricted cases of that problem, where slightly more improved
bounds are obtained [15, 16], and a few other systems (see [16]).

The single cell problem is a generalization of the related problem of bounding the
complexity of the lower envelope of ¥, i.e., the portion of the union of the surfaces
of X, consisting of those points w for which no surface of ¥ passes below w. This
problem, also rather difficult, is nevertheless easier to analyze, and recent results
[17, 27] show that the combinatorial complexity of such an envelope is O(n?=1+¢), for
any ¢ > 0, where the constant of proportionality depends on ¢, d, and the maximum
algebraic degree of the given surfaces and of their relative boundaries.

In this paper we derive an improved upper bound for the complexity of a single
cell in an arrangement A(X) of algebraic surfaces in 3-space, as above. This bound,
in 3 dimensions, is the same as the bound for lower envelopes just mentioned; that
is, it is O(n**<), for any € > 0, where the constant of proportionality depends, as
above, on ¢ and on the maximum algebraic degree of the given surfaces and of their
relative boundaries. This almost establishes the conjecture mentioned above in three
dimensions.



Our analysis adapts the proof technique of [18], which in turn is based on the
analysis technique of [17, 27] for the case of lower envelopes. The lesson one can learn
from the analysis in [18] is that in the case of a single cell one needs the following two
preliminary results to ‘bootstrap’ the recurrences appearing in the analysis:

(a) a sharp bound on the number of ‘z-extreme’ vertices of the cell C' (vertices whose
x coordinate is smallest or largest in a small neighborhood of the vertex within
the closure of ('), and

(b) a sharp bound on the number of vertices bounding ‘popular’ faces of C' (faces
that are adjacent to C' on both ‘sides’; see [3, 5, 18] and below).

Bounds on these quantities were obtained in [18] using special properties of the sur-
faces that arise in the case studied there. A main technical contribution of the present
paper is a derivation of such bounds in the general algebraic setting assumed above.
The bound (a) is obtained using considerations which are related to Morse theory (see
e.g. [21]), but are simpler to derive in 3 dimensions. The bound (b) is obtained by
applying the new probabilistic technique of [17, 18, 27] to counting only the vertices
of popular faces (this idea is in the spirit of the methodology used in [3, 5]). Once
these two bounds are available, the rest of the proof is rather similar to those used in
[17, 18, 27], although certain additional non-trivial adjustments are required.

The paper is organized as follows. In Section 2 we give several preliminary results,
including the analysis of the number of z-extreme vertices of a single cell. The main
analysis is presented in Section 3. The application of the main result to the zone prob-
lem, as mentioned in the abstract, is discussed in Section 4, and the paper concludes
in Section 5 with further applications of our results and some open problems.

2 Preliminaries

Let ¥ = {oy,...,0,} be a given collection of n surface patches in 3-space that satisfy
the following conditions:

(i) Each o; is monotone in the xy-direction (that is, every vertical line intersects o;
in at most one point). Moreover, each o; is a portion of an algebraic surface of
constant maximum degree b.

(ii) The vertical projection of o; onto the zy-plane is a planar region bounded by a
constant number of algebraic arcs of constant maximum degree (say, b too).

(iii) The relative interiors of any triple of the given surfaces intersect in at most s
points (by Bezout’s theorem [20] and by Property (iv) below, we always have
s < b?).

(iv) The surface patches in ¥ are in general position; one way of defining this is to
require that the coefficients of the polynomials defining the surfaces and their
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boundaries are algebraically independent over the rationals (i.e., no multivariate
polynomial with rational coefficients vanishes when substituting into it some of
the given coefficients), thereby excluding all kinds of ‘degenerate’ configurations;
see [17, 18, 27] for more details.

We remark that the somewhat restrictive condition (iv) and the first part of condition
(i) are not essential for the analysis. If the first part of condition (i) does not hold, we
can decompose each surface into a constant number of xy-monotone pieces by cutting
it along the locus of points with z-vertical tangency. If condition (iv) does not hold,
we can argue, by applying, as in [27], a small random perturbation of the polynomials,
that the complexity of a single cell in a degenerate arrangement of surfaces is at most
proportional to the worst-case complexity of a single cell in arrangements of surfaces
in general position.

2.1 The Number of z-Extreme Vertices

We are given a point Z not lying on any surface, and define C' = Cz(X) to be the
cell of the arrangement A(Y) that contains Z; by definition, C' is an open set in IR®.
Recall the following definition (already mentioned above):

Definition 2.1 An x-exireme vertex v of the cell (' is a vertex whose x coordinate
is smallest or largest in the closure of some connected component of N N C, where N
is a sufficiently small ball centered at v.

For each x¢ € R, let 7., denote the plane x = x.

Definition 2.2 A point w € 9C is said to be critical if there exists a neighborhood
N of w and a connected component K of C'N N so that K N 7, is disconnected,
where g 1s the x-coordinate of w, but K N, is connected either for all x < ¢ or for
all © > x¢ sufficiently close to xq.

Remark: This definition is a special case of the definition of critical points (of the
coordinate function ) in Morse theory [21]. Another distinction is that the classical
Morse theory applies to smooth manifolds, whereas here 9C' is generally non-smooth.

The main result of this section is:
Theorem 2.3 The number of x-extreme vertices of C' is O(n?).

Proof. We first claim that the number of z-extreme vertices of (' is proportional to
1 plus the number of critical points of . We prove this by an argument borrowed
from [6]. We then show that the number of critical points of C' is O(n?) and by that
complete the proof of the theorem. These two steps are achieved, respectively, in the
two following lemmas.



Lemma 2.4 The number of x-extreme vertices of C' is proportional to 1 plus the
number of critical points of C'.

Proof. We sweep C' by moving the plane 7, in the direction of increasing x, and keep
track of the number I of connected components of ' N 7,. This number is initially
(at © = —o0) O(n?), since this is an upper bound on the overall complexity of any
planar cross section of the entire arrangement A(X). The number [ increases by 1
when 7, sweeps through a local z-minimum of ', or when a connected component
of C'N 7, splits into two subcomponents; [ decreases by 1 when 7 sweeps through
a local xz-maximum of C, or when two components of ' N 7, merge into a single
component. (The general position assumption implies that only two components can
merge into, or split from, a component of C' at any given x.) The number of events
at which components can split or merge is equal, by definition, to the number @) of
critical points of C'.

Consider the following dynamic scheme for assigning weights to components of
C N 7w, Initially, at * = —oo, we assign weight —1 to each component of C' N 7.
When 7, sweeps through a local z-minimum point of ', a new component of C' N 7,
is created, and is also assigned weight —1. When two components of C' N 7, merge,
we assign to the new component weight equal to 2 plus the sum of the weights of
the merged components. When a component shrinks and disappears, its final weight
is added to a global count M. When a component is split into two subcomponents,
each of them is assigned weight 1 + 2, where w is the weight of the split component.

We claim that, at any given time during the sweep, the weight of any component
of C'Nm, is always at least —1, and the weight of a component that was formed by one
or more preceding splitting and merging operations is non-negative. Both claims are
easy to prove by induction on the sweep events. If C' has no critical points then it has
at most one local x-minimum and at most one local x-maximum, and the claim holds
trivially in this case; so suppose C' does have critical points. In this case it is easily
verified, using induction on the sweep events, that the weight of each component of
C' N 7, that shrinks to a point as we reach a local x-maximum of C' is nonnegative,
so the value of M is always nonnegative. Similarly, all components that survive as «
reaches 400 have nonnegative weight.

Suppose that, at some point during the sweep, there are s, local x-minima of '
to the left of 7., that C'N 7_,, has ¢t components, that the number of splittings and
mergings of cross-sectional components to the left of 7, is ), < @, and that the
current value of the count M is M,. Then, as is easily verified by the definition of
weights and by induction on the sweep events, the total weight of the components
of C' N m, plus M, is equal to 2Q), — s, — t. Hence, since at * = +oo the total
weight of the components of C' N 7, plus M, is nonnegative, we have 2¢) — s —1t > 0,
where s is the total number of local z-minima of C'. This implies that s < 2Q). A
symmetric argument applies to the number of local z-maxima of ', and thus the
claim is established. O

Lemma 2.5 The number of critical points of C' is O(n?).
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Proof. For any fixed surface o € X, the general position assumption is easily seen
to imply that there are only O(1) critical points that lie only on ¢ and on no other
surface, so the total number of such points, over all ¢ € ¥, is only O(n). The number
of critical points that lie on the boundary of one surface of ¥ and on a second surface,
summed over all pairs of such surfaces, is only O(n?). This follows from Bezout’s
theorem applied to the number of intersections between an algebraic surface and an
algebraic arc, in combination with our basic assumptions (i),(ii), and (iv) about the
surface patches in X.

Consider next critical points that lie in the relative interior of an intersection curve
vij = 0;N 0o, for some pair of surfaces oy, 0; € ¥ and on no other surface of X. If such
a point w is a singular point! on, say o;, then w is an intersection point between o;
and the curve of singular points on o;, and, by the general position assumption, the
number of such points, over all pairs o;, o; € X, is clearly O(n?). We thus may assume
that w is nonsingular on both surfaces, and, by the general position assumption, that
o; and o; meet transversally at w. But then the criticality of w is easily seen to imply
that the tangent vector to 7;; at w must be orthogonal to the z-axis, and the number
of points on v;; with this property is O(1) (under the general position assumption).
Hence the total number of such points, over all pairs o;, o; € X, is also O(n?).

Finally, suppose that w is a critical point that is also a point of intersection of
three surfaces oy, 0;, 0p € X. Arguing as above, we can rule out the case where w
is singular on either of these surfaces. Consider now the three intersection curves
Vi = Ty N 04y Y = Ty N 04, Y = Ty 0k, Where 2 1s the z-coordinate of w. These
curves meet at w, they are all smooth at w, and K N7, lies on a single side of each
of the curves. If any two of these curves, say 7; and ~;, are tangent to each other at
w, then, as is easily verified, the tangent at w to the curve o;No; is orthogonal to the
z-axis, and, as argued above, the number of such points w is only O(n?). Otherwise,
K N 7, must be fully contained, locally near w, in just one of the six regions into
which these curves split 7, locally near w (see Figure 1). However, this is easily seen
to contradict the criticality of w, and thus implies that the total number of critical
points of C' is O(n?), as asserted. O
This also completes the proof of Theorem 2.3. O

2.2 Inner Vertices, Sides and Borders

For the analysis in the following sections, we need to introduce additional terminology
relating to cells of various dimensions in the arrangement. We call a vertex v of A(X)
an inner vertex, if v is formed by the intersection of the relative interiors of three
distinct surfaces of ¥. Let v be an inner vertex of C' = Cz(X), which is incident
to three surfaces oy, oy and o3 that meet transversally at v, and which is not a
singular point on any of these surfaces. For technical reasons, we distinguish between
different sides of v, adapting the notation of [18] (see also [3, 5, 13]). Formally, the

LA point v is singular on an algebraic surface in IRY, defined by P = 0, for some polynomial P,
if all the partial derivatives 9P/0x;, for i = 1,... d, vanish at v; see [7, 20].



Figure 1: Transversal non-singular intersection of three surfaces does not give rise to
a critical point

three tangent planes to the surfaces o; at v partition 3-space into 8 octants, and a
side R of v is any one of these octants. We call the pair (v, R) a 0-border. We say that
(v, R) is a 0-border of C' if, when we move from v in any direction that points into
R by any sufficiently small distance, we enter C'. We will be counting the number of
inner 0-borders of ', which means that we count each vertex v of €' with multiplicity,
once for each side of v that lies in C' (in the above sense). We define x(X) to be the
number of inner 0-borders on dCz(X). We also denote by x(n) the maximum possible
value of k(X), taken over all collections ¥, as above, with a total of n surfaces, and

over all cells of A(X).

In the following analysis, the notion of a side needs also to be extended to edges
and faces bounding C'. For an edge ¢, formed by the intersection of two surfaces o, o’,
we can assume (by reasons similar to those used in the preceding arguments) that no
point on e is singular on either of these surfaces, and that ¢ and ¢’ cross each other
transversally at each point of e. Then at each point z € ¢, the plane normal to e at
z is split by the two tangent planes to o, ¢’ at z into 4 quadrants. A side of e can be
thought of as a continuous mapping (in the Hausdorff sense) that maps each point
z € e to one of the quadrants at z (or, rather, to make the Hausdorff continuity well
defined, to the intersection of such a quadrant with the unit ball around z). Similarly,
a side of a face f can be defined as a continuous mapping from each point z € f to
one of the two unit vectors normal to f at z. If a vertex v is incident to an edge e and
lies on another surface o crossing e transversally, then a side R of v is consistent with
a side @) of e if the limit of (z), as z approaches v, is contained in (the closure of)
R, and R is the positive cone spanned by the limit of Q)(z) and by the vector tangent
to e at z and pointing from z towards e. Consistency between sides of a vertex and
an incident face, or between sides of an edge and an incident face, can be defined
in a similar manner. If v is a non-singular vertex of A(X), incident to two edges ey,
€2, which are contained in the same intersection curve of a pair of surfaces, we say
that a side Ry of ey is consistent with a side Ry of ey if the two limits of Ry(z) as =z
approaches v along ey, and of Ry(z) as z approaches v along es, coincide. If R}, R}
are the two sides of v consistent with Ry, Ra, respectively, we say that R} is the side



Figure 2: R; is the side of e; facing the reader, for ¢ = 1,2; the sides R} and R} of
v consistent with Ry and R, respectively, are also facing the reader and are opposite
one another across the surface o3

of v opposite to R across the third surface defining v; see Figure 2. Given an edge
e and a side R of e, we say that (e, R) is a [-border of C if, when we move from any
point z € e in a direction contained in R(z), we enter C'. Similarly, we can define

2-borders (f, R) of C, for a face f and a side R of f.

3 Complexity of a Single Cell

We concentrate on bounding the number of inner vertices of Cz(X), and later on
justify the use of this reduced measure of complexity. Our main result is:

Theorem 3.1 The number of inner vertices of Cz(X) is O(n*t¢), for any ¢ > 0,
where the constant of proportionality depends on ¢ and on the marimum degree and
shape of the surfaces and of their relative boundaries.

This result will be proved in three stages. Subsections 3.1 and 3.2 will each be
dedicated to analyzing the complexity of a different type of inner vertices. This
analysis will yield recurrences that will then be solved in Subsection 3.3 to give the
asserted bound. In Subsection 3.4 we will argue that Theorem 3.1 implies a similar
bound on the total complexity of a single cell.

3.1 The Number of Inner Vertices

Let v be an inner vertex of C' = Cz(X), which is incident to three surfaces oy, o3
and o3. We may assume that v is not a singular point on any of these surfaces, and
that these surfaces meet transversally at v. If, say, v is a singular point of oy, then
it lies on the algebraic curve of bounded degree consisting of all singular points on
o1. The number of intersection points of this curve with, say o3, is constant (under
the assumption of general position), which implies that the number of such vertices is



Figure 3: The popular face f borders the cell €' on both its sides

only O(n?). The assumption concerning transversality is also justified by the general
position assumption.

Let (v, R) be an inner 0-border of C' (non-singular, formed by the transversal
intersection of its three incident surfaces, say oy, 0q, 03). The corresponding vertex
v is incident to (at least) three edges of ', which we denote by ejs, €13, and eas,
where each ¢;; is a portion of the corresponding intersection curve v;; = o; N o, for
1 <1 < j < 3; moreover, each edge ¢;; has a side R;; which is consistent with R,
so that (e;;, R;;) is a 1-border of C. If one of these curves, say 712, contains two
edges, e1q, €]y, with respective sides Ry, Rj,, such that e;; and €}, have v as a
common endpoint, Ris and R}, are consistent with each other, and both (ejs, R12)
and (e},, R},) are 1-borders of C', then, as is easily seen, there is a face f on o5 which
is incident to v and which forms with both its sides 2-borders of '. We call such
a face a popular face of C, borrowing a notation from [3, 5]; see Figure 3. Let us
denote by 7(¥) the maximum number of inner vertices of popular faces bounding a
single cell of A(X), and let #(n) denote the maximum of 7(X), over all collections ¥
of n surfaces as above (with the same s and b). (Strictly speaking, a vertex v can
be incident to more than one popular face, in which case we count it in 7(X) with
multiplicity, once for every incident popular face.)

A major novel ingredient of the proof is the derivation of a sharp upper bound
on the number of vertices of popular faces of C; in the previous paper [18] such a
bound was derived using special properties of the surfaces that arose in the specific
motion planning application that was studied there; here we apply a new technique
for obtaining the desired bound in general arrangements. First, in the rest of this
subsection, we obtain an upper bound for the complexity £(n) in terms of the function
7, and then, in the next subsection, proceed to derive an upper bound for 7 (n).

Thus, up to an additive term of w(n), it suffices, for the bound on x(n) that we
seek, to consider only inner vertices v (or, rather, inner 0-borders (v, R)) which are
not incident to any popular face of C'.

Let (v, R) be a 0-border, and let us continue to follow the notations introduced
above. For each 1 <@¢ < j <3, the curve ~;; must contain a maximal relatively-open
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az-monotone connected portion f;; having v as an endpoint, such that the 1-border
(Bij, Ri;), where R}, is the side of 3;; consistent with R, is disjoint from C. Let z;
denote the other endpoint of 3;;.

We define the index of v, denoted j(v), to be the number of points of intersections
of o1, 09, 03 which lie to the right of v (i.e., with @ > x(v)). Clearly, 0 < j(v) < s—1.

We define k) (%), for j = 0,...,5 — 1 to be the maximum number of 0-borders
(v, R) of any fixed cell of A(Y), whose vertices v are inner vertices of index at most
j. We also define £ (n) to be the maximum possible value for x#U)(X), over all
collections ¥ of n surface patches satisfying conditions (i)—(iv) (with the same b and
5). Similarly, we define 7)(2), for j = 0,...,5 — 1, to be the maximum number of
vertices with index at most j of all popular faces bounding any fixed cell of A(Y),
where each such vertex is counted with multiplicity, once for every incident popular
face. We also define 7()(n) to be the maximum possible value for 7()(X), over all
collections ¥ of n surface patches satisfying conditions (i)—(iv) (with the same b and
s).

Our method is to derive a recurrence relationship for x(n), by bounding each of
the functions £\ in terms of x~Y (with a special handling of £(°)); the solution of the
resulting system of recurrences will yield the asserted bounds. Note that, we are in
fact looking for a bound on the quantity #(*=Y(n), as each vertex in the arrangement
is of index at most s — 1. The remainder of this subsection is devoted to proving the
following:

Lemma 3.2 For each 3 =0,...,s — 1, we have
D(n) = O(Er(n/) + ExD(nf€) + €D (n/6) + n® + 7)) ,

where we put KV~ =0 when j = 0.

Proof. Let us fix 0 < j < s—1, and assume that the vertex v under consideration has
index at most j. First, there are only at most 7()(n) such vertices that are incident
to popular faces. The other vertices can be classified into several categories. The
first two cases, (a) and (b) below, are easy to charge directly, and the total number
of vertices that fall into these categories is shown to be O(n?). The difficulties arise
when the endpoints z;; of the three arcs ;; all lie on the boundary of the cell C'. A
more involved charging scheme is needed in these cases (resulting in the more involved
terms in the recurrence): In case (c) we handle the situation where at least one of
the arcs 3;; is not intersected by the third surface (say, 312 is not intersected by o3).
The remaining case (d) handles the situation where all arcs 3;; are each intersected
by the third surface. Each of the cases (c¢) and (d) is further divided into subcases
according to certain parameters that are introduced in the analysis.

In more detail, we assume that the vertex v under consideration is not incident
to any popular face, and consider the following cases:

(a) All three arcs f3;; emerge from v in the direction of increasing « (or all emerge in
the direction of decreasing x). In this case v is an x-extreme vertex of C, as is easily
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Figure 4: The dotted faces on the surface oy appear on the boundary of €', and near
both of them C' lies, say, above oy

checked (using the general position assumption), and Theorem 2.3 implies that the
total number of such vertices (and corresponding 0-borders) is O(n?). We will thus
assume in the sequel that at least one of these arcs emerges from v in the direction
of increasing x, and at least one arc emerges in the direction of decreasing z.

(b) At least one of the arcs f3;; ends at a point z;; which is either an endpoint of the
original intersection curve «;;, or a point of local z-extremum on that curve. We then
charge (v, R) to the point z;;, and note that the number of such points is O(n?), and
that each such point is charged only a constant number of times in this manner (e.g.,
along (3;; it can be charged at most once for every side of 3;;), thus implying that
the number of 0-borders (v, R) of this kind is only O(n?). Again, in what follows we
assume that this situation does not arise, which means, in particular, that each of
the three endpoints z;; is a vertex of C'; more precisely, each z;; has a side R}; which
lies across the third surface defining z;; from a side consistent with R.., such that

(R
(i, ;) is a 0-border of C'. See Figure 4.

(c) At least one of the arcs 3;;, say for definiteness 312, is such that £12U{z12} is not
intersected by the third surface o3.

Define the level of a point w in 3-space to be the smallest number of surfaces
of ¥ whose removal makes w belong to the closure of the cell containing Z in the
resulting subarrangement. If w is a vertex of A(X) and R is a side of w, we say that
w (resp. (w, R)) lies at restricted level A(w) = k (resp. A((w, R)) = k) if by removing
k surfaces from ¥, none of which is incident to w, we make w a vertex (resp. make
(w, R) a 0-border) of the cell containing 7 in the resulting subarrangement, and if &
is the smallest number with that property.

Let ¢ denote the number of distinct surfaces of ¥ that intersect 12U {z12}. We fix
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some threshold parameter £ = ¢;, to be defined later (we will use a different parameter
for each j), and consider the following two subcases:

(c.i) t > &: In this case we charge (v, R) to a block of ¢ points of intersection between
f12 U {212} and the surfaces of ¥, defined as follows. For each surface o intersecting
P12U{z12}, choose its point of intersection that lies nearest to v along 315 We obtain
at least ¢ such designated points, and we charge (v, R) to the block of the first ¢
designated points, in their order along ;5 from v. All those points are inner vertices
of A(Y), and it is clear that none of these vertices can be charged in this manner
more than a constant number of times (along 312 each such vertex can be charged at
most twice for each side of 313). By construction, each of the charged vertices lies at
restricted level at most &, as is easily verified. Our goal is thus to obtain an upper
bound for the number M of inner vertices of A(X) that lie at restricted level < ¢; the
number of 0-borders in the present subcase is O(M/¢).

For this we apply the probabilistic analysis technique of [9, 26], in the same manner
as in [18]. That is, we choose a random sample R of r = n/¢ surfaces? of ¥, and
construct the arrangement A(R). Let w be an inner vertex of A(X) at restricted
level A < ¢, and let @ be a specific collection of A surfaces, none incident to w, whose
removal makes w a vertex of the cell containing Z. The probability that w shows up
as a vertex of Cz(R) is at least (n:g?’)/(:) out of the total number (: of possible
samples R, consider those samples that contain the three surfaces forming w and do
not contain any of the A surfaces of Q; for each of these samples (and possibly for

other samples as well), w is a vertex of C'z(R). Hence, we have

()
> By < E[&(R)] < k(r) ,

= ()

where E[-] denotes expectation (with respect to R), and where Fy is the number of
vertices w of A(X) at restricted level A. (Note that x(R) counts the number of 0-
borders bounding C'z(R), which is clearly an upper bound on the number of vertices
of that cell.) This can be rewritten as

r(r—1)(r —2) ‘i(n—r)(n—r—l)---(n—r—)\—l—l)
n(n—1)(n —2) (n=3)(n—4)---(n—XA—2)

A=0

n—r—f—l—lé ¢ n(n—1)(n —2)
( -2 ) (ZF)S =2 ")

As in [9, 26], one easily verifies that, for r = n/¢, we have

F\ < k(r),

or

3

> =0k (n/€)) ;

A=0

2Here, and in similar arguments given below, we use the sloppy notation n/¢, instead of the more
accurate value [n/¢]. This is done for clarity of exposition, and does not affect in any significant
way the bounds that we derive.
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in other words, the number of inner vertices of A(X) at restricted level < ¢ is
O(&’k(n/£)), which in turn implies that the number of inner 0-borders (v, R) of
C' in this subcase is O(£*k(n/¢)).

(c.ii) t < & In this case, if we remove these t surfaces from the arrangement, v
becomes a vertex of a popular face of C'. Indeed, z15 has an appropriately consistent
side Ry, so that (z12, Ry,) is a 0-border of C'. When we remove the ¢ surfaces crossing
P12, the cell C' expands from R7, towards v and ‘reaches’ the other side of v consistent
with the side R}, of (13, making v a vertex of a popular face (on o3) of the cell
containing Z in the reduced arrangement. To exploit this observation, we apply
the following variant of the preceding random sampling argument. Fix a parameter
r=n/{, and draw a random sample R of r surfaces of ¥. Let E'[R] be the expected
number of vertices in A(R) of index < j which are incident to popular faces of Cz(R)
(counted with the appropriate multiplicity). By definition, E/[R] < 7 (r). (Note
that the index of a vertex does not change when we pass to a subset R, as long as
the 3 surfaces defining the vertex belong to R.) Now, using a similar argument to the

3

one given above, the probabilit(y that our vertex v will show up as a vertex of such
we consider those samples for which 01,009,053 € R, and none of the other ¢ surfaces

a popular face of Cz(R) is > ”:_3)/(:) of the (:) possible ways of choosing R,

crossing /12 is chosen in R; as already noted, each such choice (and possibly others as
well) will make v appear as a vertex of a popular face of the cell under consideration.
Hence, we have

e (")
50

where (i} is the number of 0-borders (v, R) in the full arrangement that fall into the
present subcase, with j(v) < j and with exactly ¢ surfaces crossing the corresponding
arc f15. Arguing exactly as above, we obtain, for r = n/¢,

Gy < E'[R] < 7V(r),

£
> Gi= 0@ (n/¢)) ;

in other words, the number of 0-borders in this subcase is O(£37\)(n/¢)).

(d) In the remaining case (which can occur only if j(v) > 0), each of the three arcs
Bi; U {zi;} intersects the third surface, and we consider one of these arc, call it (2,
which emanates in the positive x direction. Thus, the third surface o3 intersects
B12 U {z12} in at least one point w; if there are several such points (no more than
J by assumption), we take w to be the point lying furthest from v along 2. Let ¢
denote the number of distinct surfaces of X, excluding o3, that intersect 312 U {z12}.
We consider the following two subcases:

(d.1) t > & In this case we charge (v, R) to a block of £ vertices of the full arrangement
A(Y) which lie along /12, in complete analogy to the construction in case (c.i) above,
except that the surface o3 is excluded from the construction. Since each such vertex
can be charged in this manner only a constant number of times, and all these vertices
lie at restricted level < £ 4 1, as is easily checked, it follows, exactly as above, that
the total number of 0-borders v in this subcase is O(&*k(n/€)).
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(d.ii) ¢ < & In this case, if we remove these ¢ surfaces (without removing o3), the
point w, together with a side R,, consistent with R},, must form a 0-border (w, R,,) of
the cell containing Z in the reduced arrangement. Indeed, recall that we are assuming
that the other endpoint z15 of 12 forms a 0-border (z12, R,) of C, for a side R3, lying
across a surface from a side consistent with R},. By assumption, the portion of 1,
between w and zi5 is not crossed by o3, so, when the other ¢ surfaces crossing 12
are removed, the cell C' expands from the side R, and ‘reaches’ w from z;, along the
side (f12, R};). We charge (v, R) to (w, R,). Clearly, each such (w, R,,) is charged in

this manner only a constant number of times.

We next estimate the number of 0-borders (w, R,,) of this kind. We apply a
random-sampling argument similar to those used above. That is, we fix a parameter
r=n/¢, and draw a random sample R of r surfaces of ¥.. Let E”[R] be the expected
number of 0-borders (w, R,,) of Cz(R), such that w has index < j — 1. By definition,
E"[R] = E[kU=D(R)] < £U=1(r).

The probability that the charged 0-border (w, R,,) will show up as such a 0-border
of Cz(R)is > (n:g?’)/(:f) of the (Z) possible ways of choosing R, we consider those
samples for which oy,09,03 € R, and none of the other ¢ surfaces crossing 35 is
chosen in R; each such choice (and possibly other choices too) will make (w, R,,)

appear as a 0-border of Cz(R), as argued above. Hence, we have

¢ (n;jg?’) o " _ (7-1)
> Hy = O(E"[R]) = O(x7"7(r))

5 0)

where H; is the number of 0-borders (v, R) in the full arrangement that fall in the
present subcase, with j(v) < j and with exactly ¢ surfaces crossing the corresponding
arc 15 (excluding the corresponding surface o3). Arguing as above, we obtain, for

r=n/¢, g
Zth = O(E2kY(n/€)) ;

in other words, the number of 0-borders (v, R) in this subcase is O(¢3&U=1(n/€)).

Hence, summing over all cases, we obtain the following recurrence for £\ (where,
for j =0, we put £Y=1) = 0 in the right-hand side):

#(n) = O(Er(nf€) + 7V (n/f€) + ERVV /6 + 0> + 7V (), (1)
as asserted. O

In order to solve the recurrence (1) we first have to bound the functions 7()(n),
which is done in the next subsection.

3.2 The Number of Vertices on Popular Faces

To bound the number of such vertices, we adapt the analysis given above to bound
the functions 7()(n), rather than the functions £\ (n).
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Figure 5: The setting of Subsection 3.1; f is a popular face

Let v be an inner vertex of a popular tface f of the cell C'; assume that f lies
on a surface o € ¥, and that the two other surfaces incident to v are oy,09 € X.
As above, we may assume that v is non-singular on any of these surfaces, and that
these surfaces meet transversally at v. Denote the two sides of f by RT and R~. Let
vi = o0;No, for 2 = 1,2. Fach v; contains an edge e; having v as an endpoint and
bounding f. See Figure 5 for an illustration. Let RY, R, for ¢ = 1,2, denote the
two sides of e; that are consistent with RT, R™, respectively.

If, say 71 has another edge €] incident to v such that (a) €] bounds another popular
face f' on o, and (b) f and f’ share the edge ey, then ey is a popular edge of C', meaning
that all four sides of ey lie in €' locally near ey (see Figure 6). We claim that the
number of popular edges of €' is O(n?). This follows from the observation that, in
this case, v must be a locally z-extreme vertex of one of these four sides® (assuming
general position), and, by Theorem 2.3, the number of such vertices, and hence also
the number of popular edges, is O(n*). Moreover, if both e; and e; emanate from v
in the positive z-direction, or if both emanate in the negative z-direction, then, as
is easily checked, v must be a locally x-extreme vertex of one of the two sides of f,
so the number of such vertices is also O(rn?). Hence, in what follows we may assume
that neither of the edges ey, €5 is adjacent along o to another popular face of C'; and
that one of these edges emanates from v in the positive z-direction and one emanates
in the negative z-direction.

As above, our method is to derive a recurrence relationship for =(n), by bounding
each of the functions 70) in terms of 7= (with a special handling of 7(®); the
solution of the resulting system of recurrences will yield the asserted bounds. In the
remainder of this subsection we prove the following:

3Strictly speaking, v is locally z-extreme in one of the four portions of €' into which these sides
‘point’; we allow ourselves here and below this slight abuse of notation.
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Figure 6: Two adjacent popular faces f, f’, giving rise to a popular edge e,

Lemma 3.3 For each 3 =0,...,s — 1, we have
r(n) = O(Er(n/€) + &n* + £70V(n/€)) .

we put 70~ =0 when j = 0.

Proof. Let us fix 0 < j < s—1, and assume that the vertex v under consideration
has index < j. By our assumptions, for = 1,2, the curve 7; must contain a maximal
relatively-open z-monotone connected portion f; having v as an endpoint and satis-
fying the following property: let R", RI™ be the two sides of 3; which are consistent
with the two respective sides Ry, R; of ¢;; then 3; does not contain any point at
which both sides R/*, R~ lie locally in C'. Let z; denote the other endpoint of £3;.
By assumption, one of these arcs, say 31, emanates from v in the positive x-direction

and the other emanates in the negative z-direction.

Several cases can then arise (similar to the analysis in the previous subsection).
Case (a) below deals with vertices that are easy to charge directly, and their total
number is shown to be O(n?). Case (b) handles situations where /3, is not intersected
by the third surface oq; and in the remaining case (c) the surface oy intersects 4y in
at least one point. Here too the more involved cases (b) and (c) are further divided
into subcases according to certain parameters that are introduced in the analysis.

(a) At least one of the arcs f3; ends at a point z; which is either an endpoint of the
original intersection curve ~;, or a point of local z-extremum on that curve. We then
charge v to the point z;, and note that the number of such points is O(n?), and that
each such point is charged only a constant number of times in this manner, thus
implying that the number of vertices v of this kind is only O(n?). In what follows
we assume that this situation does not arise, which means, in particular, that z; is
a vertex of another popular face of ', whose two sides are consistent with R", R\,
respectively.
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Figure 7: Cases (b) and (c) of the analysis of vertices of popular faces; f’ is also a
popular face

(b) 81U {z1} is not intersected by the third surface o.

Define the popularity level of a point w lying on some surface o € ¥ to be the
smallest number of other surfaces of ¥ whose removal makes w lie in a popular face
on ¢ bounding the cell containing Z in the resulting subarrangement. If w is a vertex
of A(Y), incident to some face f C o, we say that (w, f) lies at restricted popularity
level p((w, f)) = k if by removing k surfaces from X, none of which is incident to w,
the face f becomes (after a possible expansion) a popular face (incident to w) of the
cell containing Z in the resulting subarrangement, and if &£ is the smallest number
with that property.

Let ¢ denote the number of distinct surfaces of ¥ that intersect 5y U {z1}. We fix
some threshold parameter ¢ = ¢;, and consider the following two subcases:

(b.1) t > & In this case we charge the pair (v, f) to a block of £ points of intersection
between ;1 U {z1} and the surfaces of ¥, defined as follows. For each surface o’
intersecting 31 U {z1}, choose its point of intersection that lies nearest to v along ;.
We obtain at least ¢ such designated points, and we charge (v, f) to the block of the
first £ designated points, in their order along 3y from v. All those points are inner
vertices of A(X), and it is clear that none of these vertices can be charged in this
manner more than a constant number of times. By construction, each of the charged
vertices w, together with some incident face along o, lies at restricted popularity
level at most &: the removal of the at most ¢ surfaces intersecting ; between v and
w (including oy but excluding the surface incident to w) makes the popular face f
expand into a bigger, still popular face of the cell containing 7. which has w as a
vertex (see Figure 7). Our goal is thus to obtain an upper bound for the number M
of pairs (w, f') of inner vertices w of A(X) and incident faces f’ that lie at restricted
popularity level < ¢; the number of pairs (v, f) in the present subcase is O(M/¢§).

For this we apply an appropriately modified version of the probabilistic analysis
technique used in the previous subsection. That is, we choose a random sample R
of r = n/¢ surfaces of ¥, and construct the arrangement A(R). Let (w, f’) be a

18



pair of an inner vertex w of A(X) and an incident face f’, lying on a surface o, at
restricted popularity level p < ¢, and let Q@ be a specific collection of p surfaces, none
incident to w, whose removal makes w a vertex of a popular face (containing f’) of
the cell containing Z. The probability that w shows up as such a vertex in A(R) is,

in complete analogy to the preceding analysis, at least (”;_pg?’)/(:f) Hence, we have

e (")
Y ~——~F+F, <E[x(R)] <=(r),

0

where E[-] denotes expectation, and where F, is the number of vertex-face pairs (w, f’)
of A(X) at restricted popularity level p. As in the preceding analysis, this implies,
for r =n/¢,

£
S By = O(ER(n/6))

in other words, the number of inner vertex-face pairs of A(X) at restricted popularity
level < ¢ is O(&°x(n/€)), which in turn implies that the number of vertices v of
popular faces of C' in this subcase is O(&*w(n/¢)).

(b.ii) ¢t < & In this case, if we remove these ¢ surfaces from the arrangement, v
becomes a vertex of a popular edge of C' (namely e; or an appropriate extension of
it). Indeed (see Figure 7), z; has two sides, R'", R'™, which are consistent with the
two sides of a popular face f’ of C' having z; as a vertex, and are also consistent with
the two respective sides R[t, R™ of 3;. This easily implies that when we remove the
t surfaces crossing 3; U {z1} (not removing o), the cell €' expands from R'" and R~
towards v and the face f’ expands into a bigger, still popular face which is bounded
by v and by (a possible extension of) its incident edge ez; by definition, this edge
is thus a popular edge of the resulting cell. To exploit this observation, we apply
the following variant of the preceding random sampling arguments. Fix a parameter
r=n/{, and draw a random sample R of r surfaces of ¥. Let E'[R] be the expected
number of vertices in A(R) that are incident to popular edges of the cell containing 7
in this arrangement. By the preceding analysis, E'[R] = O(r*). Now, using a similar
argument to the one given above, the probability that our vertex v will show up as a

vertex of such a popular edge in A(R) is > (n:g?’)/(:f) Hence, we have

> (), . R — 00

50

where (; is the number of vertices v in the full arrangement that fall into the present

subcase, with exactly ¢ surfaces crossing the corresponding arc #;. Arguing as above,
it follows that, for r = n/¢,

£
> Gi=0(r%) = 0(n”) ;

t=0

in other words, the number of vertices v in this subcase is O(&{n?).
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Figure 8: Case (c.ii): the vertices v and w are both intersections of the same three
surfaces

(c) In the remaining case (which can occur only when j(v) > 0), the surface oy
intersects 1 U {z1} in at least one point w; if there are several such points (no more
than j by assumption), we take w to be the point lying furthest from v along 3. Let
t denote the number of distinct surfaces of ¥, excluding oy, which intersect ;. We
consider the following two subcases:

(c.i) t > & In this case we charge the pair (v, f) to a block of ¢ vertices of the
full arrangement A(X) which lie along 1, in complete analogy to the construction in
case (b.i) above, except that the surface o3 is excluded from the construction. Since
each such vertex can be charged in this manner only a constant number of times, and
since all these vertices lie at restricted popularity level < ¢ + 1, as is easily checked,
it follows, exactly as above, that the total number of vertices v that are charged in

this way is O(&27(n/§)).

(c.ii) t < & In this case, if we remove these t surfaces (without removing o3),
the point w, together with two appropriate sides R}, R7, consistent with BT, R,
respectively, must be a vertex of a popular face f’ of the cell containing Z in the
resulting subarrangement, so that R} and R, are consistent with the two sides of f’.
Indeed, arguing as above, the other endpoint z; of 3 is a vertex of an appropriate

popular face f” of €', and removal of the ¢ other surfaces crossing ; makes f” expand

and ‘reach’ w along the appropriate sides; see Figure 8 for an illustration. We charge
(v, f) to (w, f'). Clearly, each such pair (w, f’) is charged in this manner only a
constant number of times.

We next estimate the number of pairs (w, f') of this kind. We apply a random-
sampling argument similar to those used above. That is, we fix a parameter r = n/¢,
and draw a random sample R of r surfaces of ¥. Let E”[R] be the expected number
of vertices w of popular faces f’ of Cz(R) which have index < j — 1 (counted with
the appropriate multiplicity). By definition, B”[R] = E[zU=D(R)] < #U=D(r).

Arguing as above, the probability that the charged vertex-face pair (w, f’) will
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show up as such a vertex in A(R) is > (n:g?’)/(:) Hence, we have

S (n;jg?’) _ " _ (7-1)
> Hy = O(E"[R]) = O(xV"7(r)) ,

5 0)

where H; is the number of vertex-face pairs (v, f) of Cz(¥) that fall in the present
subcase, with exactly ¢ surfaces crossing the corresponding arc 3; (excluding the
corresponding surface 03). Again, for r = n/¢ this becomes

€
> Hy =07 n/€))

hence, the number of vertex-face pairs (v, f) in this subcase is O(&2xU=Y(n/¢)).

Summing over all cases, we obtain the following recurrence for 7\ (where, for
j =0, we put 7U~Y = 0 in the right-hand side):

W (n) = O(Ex(n/€) + &n* + Ex(n/€)) (2)

as asserted. O

3.3 Solving the Recurrences

We next proceed to solve the recurrences (1) and (2).

3.3.1 The Recurrence for =)

We start with Equation (2), fix some & > 0, and claim that its solution is 7()(n) <
B;n?*¢ for j = 0,...,5 — 1, where the constants B; depend on &, j, and on the
maximum degree b. By definition, this implies that 7(n) < B,_jn***.

We prove this claim by induction on n. We first rewrite (2), using a different
parameter ¢; for each j, as

7O (n) < ctim(n/bo) + cbon’
and (3)

7D(n) < ex(n/&) + ctn® + 270V (n/g) . j=1,...,8— 1,

for appropriate positive constants ¢, &, ..., &s_1; without loss of generality, we assume
c> 1. We take & to be sufficiently large, and put &; = £5, for j = 0,...,5 — 1; note
that & = ¢y, for j = 1,...,s — 1. We note that, by choosing the B;’s to be
sufficiently large, we can assume that the claimed bounds hold for all n < ¢&. (E.g.,
choose the B;’s to be larger than some appropriate multiple of &, and use the fact
that all the quantities we want to estimate are bounded by O(n?), where the constant
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of proportionality depends only on the maximum degree b of the surfaces and of their
boundaries.)

For n > £y, we apply the induction hypothesis in the right-hand side of (3), and
conclude that the asserted bounds continue to hold for n too, provided that the
following inequalities are satisfied:

CBSE_I N cij
£ €6

To achieve this, we choose

‘I’Cf}_sBj_lSB]‘, j=1,...,s—1.

(J+ 1)

By >2c£,™°, and B; = Iz
J

fSBO 9

and require that & be sufficiently large so that £ > 2sc® .
The first inequality in (4) is equivalent to

s—1 15
s By ¢ 1o
56 t e + cfo S BO 3
s—1 0
or to
sc’

S Bot+ctl < B,.
&

Since sc® /€57 < %, the choice of By is easily seen to satisfy this inequality. The
general inequality in (4) is equivalent to

sc? - B 1 c&; e g 4+ 1)¢!
50 0 — _I_ f] _I_ Cfo (1 ) . J . fSBO S (] )

& & & e &

&5 B .

Using again the fact that sc®/£5° < %, the last inequality is easily seen to be implied
by 4
Cf]' < (C] - %)f(EJBO /

& ~ 5
b
or by c£1+s 4 1
— < (= B (5)

However, when j increases, the left-hand side of (5) decreases, while the right-hand
side increases (using the assumption that ¢ > 1). Hence it suffices to verify (5) for
J = 0, which trivially holds by the choice of By. This inductive step completes the
solution of the recurrence for the functions 7@ (n).
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3.3.2 The Recurrence for ¥

We next proceed to solve the recurrences (1). If we substitute in these equations the
bounds for 7()(n), as just obtained, and use a different threshold parameter &; for
each j, we can rewrite the recurrences as

#O(n) < e€gr(n/éo) + c& Bon™**
and
(n) < cfr(n/&) + ehV T (0 /&) + B j =1, s,
for appropriate positive constants ¢, £, ...,&—1 (not necessarily the same as in the

recurrences for x); with no loss of generality, we assume ¢ > 1.

As above, we fix some ¢ > 0, and claim that the solution of these equations is
£ (n) < An?*s for j = 0,...,s — 1, where the constants A; depend on ¢, j, and
the maximum degree b. By definition, this implies that x(n) < A,_n?*e.

We prove this claim by induction on n. Again, we take £y to be sufficiently large,
and put ¢; = &, for j = 0,...,5 — 1. By choosing the A;’s to be sufficiently large,
we can assume, as above, that the claimed bounds hold for all n < &.

For n > &y, we apply the induction hypothesis, and conclude that the asserted
bounds continue to hold for n too, provided that the following inequalities are satis-

fied:
CAs—l

G
F A A B S A, =1 s— L

+ &y By < Ao

CAs—l
&

To achieve this, we choose

J+ 1)cj

2¢t: B
Ap > max & and Aj:( Iz
J

0<y<s—1 &

Ao,

Y

and require that & be sufficiently large so that £ > 2sc® .

We leave it to the reader to verify, in much the same way as above, that this
choice of coefficients satisfies the above inequalities. This inductive step completes
the solution of the recurrences for the functions «)(n), and therefore completes the
proof of Theorem 3.1.

3.4 The Overall Result

The overall complexity of a cell C' counts the number of vertices, edges, and faces of
dC, each with an appropriate but constant multiplicity. In order to derive the main
result of the paper, it remains to show that the overall combinatorial complexity of
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(' is dominated asymptotically by the bound, given in Theorem 3.1, for the number
of its inner vertices.

Note first that non-inner vertices of ' must arise as intersections of the relative
boundary of one surface with another surface, so the number of such vertices is only

O(n?).

Using rather standard arguments (see, e.g., [16, Section 3.1]), one can easily show
that asymptotically, and up to an additive factor O(rn*), a bound on the number of
vertices in (' dominates the number of edges and faces in €. Every bounded edge
and face of JC' can be charged to the point with smallest z-coordinate lying on its
closure. Such a point is either a vertex of C' or a locally z-extreme point on one of the
surfaces or on one of their intersection curves; the number of such extreme points is
clearly only O(n?). A similar argument counts the number of unbounded edges and
faces. Since each vertex or extreme point is charged in this manner only a constant
number of times (by our assumption on general position), we easily obtain the above
claim. Combined with the observation that the same bound also applies to collections
of surfaces not in general position, we thus obtain:

Theorem 3.4 The combinatorial complexity of a single cell in an arrangement of n
algebraic surface patches in 3-space, satisfying the conditions (i)—(iii), is O(n**¢), for
any € > 0, where the constant of proportionality depends on ¢, s and b.

4 Zone Complexity

An interesting application of Theorem 3.4 is to bound the combinatorial complexity
of the zone of a surface in an arrangement of other surfaces in 3-space. Specifically,
let 3 be a collection of n algebraic surface patches in 3-space, and let ¢ be another
such surface, so that the surfaces in ¥ U {0} satisfy conditions (i)-(iv). The zone of
o in A(Y) is the collection of all cells of A(X) that are crossed by o. The complexity
of the zone is the sum of the complexities of all its cells.

Theorem 4.1 The combinatorial complexity of the zone of o in A(X) is O(n?*t),
for any e > 0, where the constant of proportionality depends on ¢, s and b.

Proof. We extend the idea used in [12] for the analysis of zones in 2-dimensional
arrangements. That is, assume first that o is a connected surface. We cut each o; € X
into a constant number of subpatches along its curve of intersection with o. If we
shrink these subpatches away from each other by a small amount, all the cells of
the zone become connected to each other, and form a single cell in the arrangement
of the new patches. Since these patches are easily seen to also satisfy conditions
similar to (i)—(iv), the asserted bound follows. If o is not connected, it consists of
a constant number of connected components, and we apply the above argument to
each component separately. O
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5 Conclusion

In this paper we have obtained a near-quadratic bound for the combinatorial com-
plexity of a single cell in an arrangement of n algebraic surface patches of constant
maximum degree, each bounded by a constant number of algebraic arcs of constant
maximum degree as well. This almost settles a long-standing conjecture, and pro-
vides a fairly satisfactory extension of the 2-dimensional Davenport-Schinzel theory
developed in [14]. Our proof extends recent techniques developed in [17, 18, 27], all
based on the probabilistic technique of [9, 26] for deriving bounds on the number of
generalized ‘(< k)-sets’ in arrangements.

As noted in the introduction, our result has immediate applications to the general
motion planning problem with three degrees of freedom. That is, for rather general
systems with three degrees of freedom, the combinatorial complexity of the connected
component of the free configuration space, consisting of all robot placements which
are reachable from some given initial free placement, is O(n?*¢), for any ¢ > 0, where
n is the number of contact surfaces, as defined in the introduction. This still falls
short of efficient construction of such a component (in near-quadratic running time,
which is one of the major open problems that we pose in this paper). However, at least
we know that the complexity of such a component is nearly an order of magnitude
smaller than the worst-case complexity of the entire arrangement, and, in most cases,
also of the entire free configuration space.

The paper raises several open problems. The first one is to design an efficient algo-
rithm (of near-quadratic complexity) for constructing a single cell in an arrangement
of algebraic surfaces in 3-space (in an appropriate ‘algebraic’ model of computation).
One method of doing this is to select a random sample R of r surfaces of ¥, for some
large constant r, construct Cz(R) by brute force, and decompose it into subcells of
‘constant description complexity’. Then, with high probability, each of these cells is
crossed by only O(* log r) surfaces of X, and we can continue the construction recur-
sively within each cell, in a manner similar to that described in [4, 27]. The problem
that arises here, however, is to ensure that the number of resulting subcells be as
small as possible (ideally, near-quadratic in r). This is an interesting combinato-
rial subproblem, which seems to be open, and considerably harder than the problem
studied in this paper.

Another open problem that the paper raises is to further improve the bound that
we have obtained, to the conjectured bound of O(nA,(n)), or at least to O(n?*polylog(n)).
Another open problem is to extend our results to arrangements in d dimensions. We
believe that this is doable, and are currently exploring this problem. One main sub-
problem here is to extend Theorem 2.3 to higher dimensions.

Other open problems are to extend our analysis to obtain sharp bounds on the
complexity of many cells in three-dimensional arrangements, and to derive bounds on
the sum of squares of cell complexities in an entire arrangement; see [2, 5] for related
work.
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