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Abstract

Snap rounding is a method for converting arbitrary-precision arrangements of seg-
ments into fixed-precision representation. We present an algorithm for snap rounding
with running time O((n + I) log n), where I is the number of intersections between the
input segments. In the worst case, our algorithm is an order of magnitude more efficient
than the best previously known algorithms. We also propose a variant of the traditional
snap-rounding scheme. The new method has all the desirable properties of traditional
snap rounding and, in addition, guarantees that the rounded arrangement does not have
degree-2 vertices in the interior of edges. This simplified rounded arrangement can also be
computed in O((n + I) log n) time.

1 Introduction

Robustness and precision issues are major stumbling blocks to successful implementation of
geometric algorithms. Tremendous effort has been exerted over the years to overcome these
problems; see the recent surveys on the topic by Schirra [14] and by Yap [17]. It is typically
assumed in the theoretical study of geometric algorithms that we have an infinite-precision real
arithmetic machine at our disposal (the so-called real RAM [13]) and that the input is degeneracy
free. Of course, these assumptions are not realistic and in practice require extra work to relax.

The approaches taken to solve the robustness problems can be roughly categorized in two
groups. The first group of solutions mimics the real-RAM machine by supplying special arith-
metic that is exact for a limited set of objects [10, 16]. The second group makes do with limited
precision arithmetic and adapts the algorithms to give meaningful and useful results in spite of
this precision restriction [7, 9, 11, 15].
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Geometric rounding, which is the topic of our paper, has the goal of transforming an arbitrary
precision geometric object into a finite-precision representation. While it is a fixed-precision
scheme, it is also relevant when we use exact computing. Quite often, the results (coordinates)
of exact geometric computing require prohibitively large number size (number of bits) or simply
cannot be expressed numerically with a finite number of bits (when algebraic numbers are
involved), making it difficult to further manipulate the results in applications.

Consistent rounding is therefore a major goal in geometric computing in practice. So far it
has been achieved in only a limited number of instances, most notably by the elegant scheme
snap rounding for arrangements of segments, originally proposed in [5] and [9]. Snap rounding
works as follows.

Let S be a finite collection of line segments in the plane. The arrangement A(S) of S is the
decomposition of the plane into vertices, edges, and faces induced by S. Given a collection of
segments whose endpoints are represented with arbitrary-precision coordinates, snap rounding
proceeds as follows [5, 9]. We tile the plane with a grid of unit squares, pixels, each centered at
a point with integer coordinates. A pixel is hot if it contains a vertex of the arrangement. Each
vertex of the arrangement (which is either a segment endpoint or an intersection point of two
segments) is replaced by the center of the hot pixel containing it and each edge e is replaced by
the polygonal chain through the centers of the hot pixels met by e, in the same order as they
are met by e. Note that in the process, vertices, edges, and faces of the original arrangement
may collapse. Guibas and Marimont [6] proved that the snap-rounded arrangement A∗ has the
following desirable properties:

Fixed-precision representation: All vertices of A∗ are at centers of grid squares. (This is
not completely trivial, as one has to argue that the rounding procedure does not introduce
new intersections.)

Geometric similarity: For each s ∈ S, the approximation s∗ lies within the Minkowski sum
of s and a pixel centered at the origin.

Topological similarity: A and A∗ are “topologically equivalent up to the collapsing of fea-
tures”. More precisely, there is a continuous deformation of the segments in S to their
snap-rounded counterparts such that no segment ever passes completely over a vertex of
the arrangement.

The most efficient algorithm to compute the snap-rounded arrangement for a given set
S of segment is by Goodrich et al. [3]. The running time of the algorithm is O(n logn +
Σh∈H |Sh| log n), where H denotes the set of all hot pixels and Sh denotes the collection of seg-
ments intersecting a hot pixel h. The complexity of a rounded arrangement is at most O(n2).
Unfortunately, as Halperin and Packer [8] observed, Σh∈H |Sh| can be as much as Θ(n3)—see
Fig. 1. Hence, the worst-case running time of the algorithm of Goodrich et al. is Θ(n3 log n).
The first contribution of our paper is an algorithm that is much better in the worst-case; it runs
in time O((n + I) log n), where I denotes the number of intersections points in A(S), which is
Θ(n2 log n) in the worst case.

Although a snap-rounded arrangement has several nice properties, as mentioned above, it is
not completely satisfactory. For instance, the distance between a vertex and a non-incident edge
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Figure 1: An arrangement where Σh∈H |Sh| = Θ(n3) [8].

in a snap-rounded rounded arrangement can still be arbitrarily small. This means the use of
finite-precision arithmetic may still cause problems. Hence, Halperin and Packer [8] introduced
iterated snap rounding, where the rounding process is repeated—that is, edges that come too
close to a vertex after rounding are snapped to that vertex—until there is a minimum separation
between vertices and edges. Unfortunately, the drift of a segment in this scheme can be very
large [12].

Another unpleasant side-effect of snap rounding is that it can introduce degree-2 vertices that
are not segment endpoints—see Fig. 2. This is an unwanted situation. Hence, we formulate a

snap round

degree-2 vertex

Figure 2: Snap rounding can induce degree-2 vertices.

fourth desirable property:

Non-redundancy: Any degree-2 vertex in A∗ corresponds to an endpoint of an original seg-
ment.

The second contribution of our paper is to show that one can satisfy the three traditional
properties—fixed-precision representation, geometric similarity, and topological similarity—and,
in addition, the non-redundancy property. In particular, we prove that after simply deleting
the degree-2 vertices not corresponding to segment endpoints—that is, replacing its two incident
edges by a single edge—we still have the other properties. This also implies that we can compute
a snap-rounded arrangement that has all four properties in O((n + I) log n) time.

2 An intersection-sensitive algorithm

Let S = {s1, s2, . . . , sn} be the collection of input segments whose arrangement A(S) we wish
to round. Following Guibas and Marimont [6], we call these segments ursegments. To simplify
the presentation, we assume that we have chosen the grid such that no ursegment is horizontal
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or vertical; if necessary, our algorithm can easily be adapted to handle horizontal and vertical
ursegments. (Note that the rounded arrangement can still have horizontal and vertical edges.)
We present an algorithm for snap rounding that is sensitive to the complexity of A(S), rather
than to the overall complexity of the chains representing the ursegments. The output of the
algorithm is a graph G = (V, E) whose nodes are in one-to-one correspondence with the hot
pixels, and that has an arc between any two nodes v1, v2 ∈ V for which there is at least one
ursegment crossing both corresponding hot pixels h1 and h2 and no other hot pixels in between.
The desired rounded arrangement is the planar straight-line embedding of this graph, where
each vertex is located at the center of its corresponding hot pixel.

The algorithm starts with computing the set H of hot pixels by finding all the vertices of the
arrangement A(S). This gives us the nodes of the graph G. It remains to find the arcs, which
we do in two stages. In the first stage, which is detailed below, we find the arcs in G for which
there is an ursegment with positive slope connecting the hot pixels that are the endpoints of the
arc. In the second stage we find the arcs for which there is a connecting ursegment with negative
slope; since it is symmetric to the first stage, we omit its description. Note that horizontal arcs
may be found twice, but this does not influence the asymptotic running time of the algorithm.

Let S+ be the subset of ursegments with positive slope. We will find the arcs in G induced
by S+ with a sweep-line algorithm. More precisely, our algorithm sweeps over the plane with
a polygonal curve, moving over the pixels in lexicographical order: pixels are treated from left
to right, and within a column pixels are treated from bottom to top. Inside a pixel we sweep
from left to right. Hence, the sweep line ` consists of up to five links, which are horizontal or
vertical—see Fig. 3. Note that any ursegment in S+ either does not intersect the sweep line, or
intersects the sweep line in a single point.

(a) (b) (c)

hi

Figure 3: Sweeping over a pixel.

The goal of our algorithm is to report an arc connecting two hot pixels only once, even when
there are many ursegments connecting the hot pixels; this is the key to our algorithm’s efficiency.
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To this end we group ursegments into so-called bundles. We orient each ursegment from left to
right. A bundle b = (Sb, hb) is a collection Sb ⊂ S+ of ursegments all coming out of the same
hot pixel hb. A bundle persists as long as it does not cross another hot pixel, where we say that
a bundle (Sb, hb) crosses a hot pixel h 6= hb if either (i) an ursegment of Sb crosses h, or (ii)
when there is a vertical line that crosses two ursegments of Sb and a hot pixel h between them
(even if no ursegment of Sb crosses h).

Since a bundle b = (Sb, hb) persists from the hot pixel hb until it crosses another hot pixel,
the vertical order of the ursegments in Sb does not change. We denote the uppermost ursegment
of the bundle by u(b) and the lowest ursegment of the bundle by l(b).

Our algorithm sweeps a “vertical” polygonal sweep line ` from left to right, as explained
above and illustrated in Fig. 3, stopping to handle events at hot pixels. In between two events,
the bundles are disjoint along `. We maintain the bundles in the following status structures:

• We have a search tree T that stores for each bundle b intersecting the sweep line ` the
delimiting ursegments u(b) and l(b), in the order in which they intersect `. (Notice that
since the bundles are disjoint, u(b) and l(b) are adjacent in T for every bundle b that
intersects `.)

• For each bundle b = (Sb, hb), we have a search tree Tb that stores the ursegments in Sb

intersecting ` in the order in which they intersect `, and that allows for splitting and
merging in O(logn) time. E.g. a red-black tree [4] can be used for this.

We also remember for each bundle from which hot pixel it originated. We are now ready to
describe the actions taken when the sweep line reaches a hot pixel h.

Step 1: Find all bundles crossing h.
Let se(h) and nw(h) be the lower right and top left corner of h. These two corners define
an interval on `, which we denote by [se(h) : nw(h)]. The two delimiting segments l(b)
and u(b) of any bundle b also define an interval on `, denoted [l(b) : u(b)]. If b crosses h,
then either l(b) ∩ ` ∈ [se(h) : nw(h)], or u(b) ∩ ` ∈ [se(h) : nw(h)], or [se(h) : nw(h)] ⊂
[l(b) : u(b)]. Bundles of the first two types can be found by searching with the interval
[se(h) : nw(h)] in T . This takes time O(log n + k), where k is the number of reported
bundles. Because the bundles are disjoint along ` when ` reaches h, there can be at most
one bundle of the third type (in fact, there can only be such a bundle if there are no
bundles of the first two types). This bundle, if it exists, can be found using T in O(log n)
time.

Step 2: Split the bundles and create new bundles.
For each bundle (Sb, hb) found in step 1, we split Sb into three subsets: (i) the set Scross

b of
ursegments that intersect h, (ii) the set Sabove

b of ursegments that pass above h, and (iii)
the set Sbelow

b of ursegments that pass below h. Note that some of these subsets may be
empty. If Scross

b is not empty for one of these bundles, then we add the arc (hb, h) to the
output graph G.

For each (non-empty) subset of type (ii) we create a new bundle (Sabove
b , hb), and similarly

we create new bundles for the subsets Sbelow
b .
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Finally we construct one new bundle b′ = (Sb′ , h), where we merge together all the subsets
Scross

b . Note that we should delete ursegments from b′ that end at h, and that we need
to add ursegments that start at h. We do these deletions and additions while sweeping
through the pixel h—see the next step.

Step 3: Update the status structures.
We first create the trees Tb for the new bundles b, but still using the old ordering along
`, that is, the ordering before ` crossed h. For the new bundles of type (ii) and (iii) this
can be done in O(logn) time, by splitting the tree Tb̂ of the old bundle b̂ that generated
b. For the bundle that collects all ursegments crossing h, we have to merge several (pieces
of) old trees into one, taking time O(log n) per old bundle crossing h.

Note that the ordering of the ursegments in bundles of type (ii) and (iii) along ` after `

crosses h is the same as the ordering before along ` before ` crosses h, because all these
ursegments miss h. Hence, we only need to update the tree Tb′ of the new bundle b′

starting at h. At this stage we also add the ursegments starting at h. This can be done by
sweeping the part of the arrangement of ursegments in S+ inside h, using and updating
the tree Tb′ while we go. During this sweep, ursegments that end in h will be deleted, and
ursegment starting in h will be inserted into Tb′ . Moreover, when we have swept over h

completely, the tree Tb′ has the correct ordering. The time for this is O((|S+

h |+ Ih) log n),
where S+

h is the set of ursegments of positive slope crossing h, including those starting at
h, and Ih is the number of intersections of S+

h inside h.

Finally, we update T . We first delete all delimiting ursegments of the bundles that have
been destroyed because they crossed h. Next we insert the delimiting ursegments of the
new bundles, in O(log n) time per bundle. Since we have the updated trees Tb of the new
bundles available at this point, we can find the delimiting ursegments of the new bundles
in O(logn) time per bundle.

This finishes the description of the actions taken at each event point, and thereby the de-
scription of the algorithm. It remains to analyze the running time.

To compute the hot pixels H we use standard plane sweep requiring O((n + I) log n) time
where I is the number of intersection points in the arrangement A(S). (This stage could be
carried out more efficiently by more involved algorithms [1, 2], but the later stages require that
amount of time.) Notice that the number of hot pixels is at most O(n + I).

Each event point in the plane-sweep algorithm is a hot pixel, so it corresponds to a vertex in
the output graph. Handling a hot pixel h takes time O(log n) per bundle incident to h, which
is equal to the degree of the corresponding vertex in the output graph, plus O(logn) time per
intersection point inside h. Since the graph is planar, the total degree is linear in the number
of vertices, which is O(n + I). As the total number of intersections is I, the total time spent by
the algorithm is O((n + I) log n). We get the following theorem.

Theorem 2.1 Given a collection S of n line segments in the plane, the arrangement A(S) can
be snap-rounded in time O((n + I) log n), where I is the number of intersection points in A(S).
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3 Simplifying a rounded arrangement

As stated in the introduction and illustrated in Fig. 2, snap-rounded arrangements can contain
degree-2 vertices that do not correspond to segment endpoints. In this section we show that
we can simply delete such vertices—that is, replace the two incident edges with a single edge—
without losing the nice properties of snap rounding.

Let S be a collection of segments in the plane, which, as before, we call ursegments. We
assume we are given a grid onto which we want to round the arrangement A(S) induced by the
ursegments. Let P be some collection of pixels that includes the pixels containing the endpoints
of the ursegments. We say that we round A(S) to P if we replace every segment s ∈ S by
the polyline that connects the centers of the pixels in P that s passes through; we denote the
resulting arrangement by AP (S).

Traditional snap rounding uses for P the collection H of hot pixels defined by S, that is, the
collection of pixels containing a vertex of A(S). We propose to use a smaller set for P . Define
a hot pixel to be red if it either contains an endpoint of an ursegment, or if its degree in AH(S)
is at least three, and let R be the collection of red pixels. We call AR(S) the simplified snap-
rounded arrangement of S. The remaining hot pixels—the ones that have degree two and do
not contain an endpoint of an ursegment—are called orange; these are not used by our scheme.

Note that we can obtain AR(S) from AH(S) by replacing every polygonal chain v1, v2, . . . , vk

whose first and last vertex are red and whose inner vertices are orange by the single segment
v1vk. Hence, we can compute the simplified rounded arrangement AR(S) in O((n+I) logn) time,
where I is the number of intersection between the segments in S: first compute AH(S) with the
algorithm of the previous section, and then discard the orange vertices. Next we show that this
simplified rounded arrangement retains all the nice properties of traditional snap rounding.

Theorem 3.1 Let S be a set of segments in the plane. Then the simplified snap-rounded ar-
rangement AR(S) has the three properties of traditionally snap-rounded arrangements—fixed-
precision representation, geometric similarity, and topological similarity—and, in addition, the
non-redundancy property.

Proof: Guibas and Marimont [6] showed that AH(S) has the traditional properties. We will
transform AH(S) into AR(S) by discarding the orange vertices one by one, and show that these
properties are invariant under the transformation. After having discarded all orange vertices,
we clearly have the non-redundancy property, and so the proof will be finished.

In each step of the transformation, we have a set P of pixels with H ⊆ P ( R, and an
orange pixel p ∈ P that we want to discard. In other words, we want to transform AP (S) into
AP−{p}(S). Let q1 and q2 be the two neighboring vertices of p in AP (S). Discarding p means
that we replace the polyline q1, p, q2 by the line segment q1q2.

To prove geometric similarity, we observe that any ursegment s is still represented by a
polyline connecting pixels that it passes through. Hence, we can use the same argument as
Guibas and Marimont: any link in the polyline for s has its two endpoints at pixel centers of
pixels intersected by s, so the endpoints are contained in the Minkowski sum of s and a pixel
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centered at the origin. By convexity of Minkowski sums of a pair of convex objects, this means
that the representation s∗ of s is contained in the Minkowski sum as well.

It remains to establish fixed-precision representation and topological similarity. We will prove
that we can continuously transform q1, p, q2 to q1q2 without passing over any vertex of AP (S).
Since AP (S) has the topological similarity property, this means that AP−{p}(S) also has this
property. Moreover, if no segment passes over a vertex, no new intersections are created, and
so we also still have the fixed-precision representation property. To prove that we can do the
transformation, we observe that the triangle ∆ defined by q1, p, q2 cannot contain a vertex of
AP (S) besides q1, p, q2 themselves. Indeed, let s be any ursegment passing through q1, p, and
q2 (there must be at least one such segment) and let ŝ be the Minkowski sum of s and a pixel
centered at the origin. Then q1, p, q2 are all contained in ŝ, and so ∆ ⊂ ŝ by convexity. Hence,
s will cross any pixel whose center lies in ∆. Because q1 and q2 are neighbors of p in AP (S),
this implies that no pixel in P can have its center in ∆. It follows that AP (S) does not have a
vertex in ∆, so we can transform the polyline q1, p, q2 into q1q2 without passing over a vertex,
as claimed. �
4 Concluding remarks

We have presented an intersection-sensitive algorithm to compute the snap-rounded arrangement
of a given set of n segments in the plane. Our algorithm runs in O((n + I) log n) time, where I

is the number of intersections between the segments in S. Thus considerably improving, in the
worst case, over the best previously known solutions. We also showed that one can simplify the
arrangement so that it does not have any degree-2 vertices except at shared endpoints of the
rounded segments.

Our work suggests a number of directions for future research. First of all, it would be
ideal to have an output-sensitive algorithm for snap rounding, that is, an algorithm whose
complexity is sensitive to the complexity of the rounded arrangement. Neither our algorithm
nor the algorithm by Guibas and Marimont [6] achieves this. Another interesting direction is
to define a snap-rounding scheme with more good properties, while retaining the ones of our
scheme. For example, it would be nice if one could guarantee a minimum separation between
vertices and edges. The iterated snap-rounding of Halperin and Packer [8] achieves this, but
their scheme is only defined algorithmically and it may result in very poor preservation of the
geometric similarity. Another property that would be desirable is that the intersection of any
two rounded segments is either a point or a connected subset of shared links; in the current
schemes two rounded segments can meet and diverge many times.
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