Personal tools
You are here: Home Projects External Projects Analysis of Algebraic Surfaces
« August 2017 »
August
SuMoTuWeThFrSa
12345
6789101112
13141516171819
20212223242526
2728293031
Log in


Forgot your password?
 

Analysis of Algebraic Surfaces


Lifting of 2d-arrangement


3d-Analysis = Planar arrangement + Lifting + Adjacencies



Steiner Roman SurfaceComputing adjacancies


Left: Steiner Roman Surface with intersection curves
Right: Computing adjacencies using buckets (planes)


Abstract

Using arrangements of algebraic curves (provided by CGAL) we compute the exact topology of real algebraic surfaces of arbitrary degree D. Our projection approach is similar to Collins' cylindrical algebraic decomposition (cad). In comparison, we construct a special planar arrangement instead of a full cad in the projection plane. This way we reduce the number of output cells for a single surface to O(D^5). Furthermore, our approach applies numerical and combinatorial methods to minimize costly symbolic computations. The algorithm handles all sorts of degeneracies without transforming the surface into a generic position. Our experiments show good performance for many well known examples from algebraic geometry. Additionally, our analysis provides geometric information as it supports the computation of arbitrary precise samples of the input, including critical points.

The implementation is part of an experimental CGAL package and thus follows the geometric computing paradigm (generic programming in C++ plus exact geometric predicates and constructions). This way we split combinatorial data structures and algorithms from actual geometric operations. While the former set is implemented generically, the latter set is surface-specific. This allows to come up with models for different surfaces. For example, we distinguish implementations for quadrics (degree at most 2) and surfaces of any degree. As, in general, robust implementations on these surfaces are lacking these days, we consider our contribution to be an important step to fill this gap.

However, the combinatorial output of the decomposition is still large. Thus, we particularly regard our work as key ingredient for querying information on and constructing geometric objects from a small set of surfaces. Examples are meshing of single surfaces, the computation of space-curves defined by two surfaces, computation of lower envelopes of surfaces, or as a basic step to compute an efficient representation of a full three-dimensional arrangement. We also consider to use our analyses for (rotational) robot motion planning.

 

Links

  • Eric Berberich, Michael Kerber, Michael Sagraloff.
    Exact Geometric-Topological Analysis of Algebraic Surfaces
    .
    In Proceedings of the 24th ACM Symposiumon Computational Geometry (SCG 2008), pp. 164-1173. [Info]
  • Eric Berberich, Michael Sagraloff.
    A Generic and Flexible Framework for the Geometrical and Topological Analysis of (Algebraic) Surfaces.
    In Proceedings of the 2008 ACM Symposium on Solid and Physical Modelling, pp. 171-182. [Info]

Contact

Eric Berberich
http://www.mpi-inf.mpg.de/~eric" eric@mpi-inf.mpg.de
Michael Kerber
http://www.mpi-inf.mpg.de/~mkerber mkerber@mpi-inf.mpg.de
Michael Sagraloff
http://www.mpi-inf.mpg.de/~msagralo msagralo@mpi-inf.mpg.de

 

Document Actions