TEL-AVIV UNIVERSITY
RAYMOND AND BEVERLY SACKLER
FACULTY OF EXACT SCIENCES
SCHOOL OF COMPUTER SCIENCE

Finite-Precision Approximation
Techniques for Planar Arrangements
of Line Segments

Thesis submitted in partial fulfillment of the requirements for the M.Sc.
degree in the School of Computer Science, Tel-Aviv University

by
El Packer

The research work for this thesis has been carried out at Tel-Aviv University
under the supervision of Prof. Dan Halperin

October 2002

Acknowledgments

My deepest appreciation to my supervisor Professor Dan Halperin, for his help, sup-
port and encouragement during this thesis, and for always being available and atten-
tive to any question or advice needed. A special thank is given to all the CGAL team
people (past and present) in Tel Aviv University and for Mr. Ariel Tankus for their
valuable help. Finally, I would like to thank my family for their support.

Contents

Acknowledgments

1 Introduction
1.1 Robustness in Computational Geometry Algorithms
1.2 Software Libraries for Robust Geometric Computing

1.3 Thesis Outline

I Tterated Snap Rounding
2 Snap Rounding

3 Iterated Snap Rounding
3.1 The Distance Between a Vertex and a Non-Incident Edge
3.2 Algorithm

3.3 Algorithmic Details and Complexity Analysis
4 c-Oriented Kd-Trees
5 Implementation Details

6 Rounding Examples: SR vs. ISR
6.1 Congestion Data L o
6.2 Triangulation Data L Lo
6.3 Geographic Data oo

(@2 e N L

10

14
14
15
19

23

26

Contents

IT Controlled Perturbation of Line Segments
7 Controlled Perturbation

8 Controlled Perturbation of Line Segments

8.1 Introduction Lo
8.2 Preliminaries and Key Ideas
8.3 The Degeneracies
84 Algorithm
8.5 Optimizations

8.5.1 Tiling the Plane

8.5.2 Reducing the Perturbation Magnitude
8.6 ComputingTandm
8.7 Approximating the Best Ratio (R)

8.8 Discussion: Exact Arithmetic vs. Finite-Precision Arithmetic

8.9 The Main Theorem

9 Implementation Details

10 Experimental Results

10.1 Congestion Data
10.2 Random Data

11 Implementation Details

12 Conclusion

12.1 Tterated Snap Rounding

12.2 Controlled Perturbation of Line Segments

A Computing ¢; and 9,

A.1 First Phase: Computing dy
A.2 Second Phase: Computing do

A.2.1 Computing Forbidden Loci Induced by P/_, and s;

35

36

38
38
38
41
41
42
43
45
46
48
49
50

52

53
93
54

57

59
29
60

Contents 3

A.2.2 Computing Forbidden Loci Induced by Intersections of Seg-
ments of SY yands; 64

A.2.3 Computing Forbidden Loci Induced by S , U{p;} and¢; . . . 65

A.2.4 A Lower Bound on the Distance Between an Intersection of
s; with an Already Inserted Segment and an Already Inserted
Segment 65

A25 Computing dy oL 68
A.3 Concluding Perturbation Radii 68

Chapter 1

Introduction

In this chapter we present the problem of robustness in computational geometry in
general and review work that has been done in this field. We focus on the subject
of our research, Finite-Precision Approximation for arrangements of line segments in
IR?. We conclude this chapter with an outline of the thesis.

1.1 Robustness in Computational Geometry Algo-
rithms

There are two major obstacles in making the implementation of computational geom-
etry algorithms and data structures robust: the use of floating-point arithmetic and
degeneracies (or near-degeneracies) in input data or that occur during intermediate
computations. The two are closely related since floating-point arithmetic problems are
often caused by degenerate input data. When using floating-point arithmetic, a de-
generate case is induced not only by degenerate data, but also by close-to-degenerate
data. Since floating-point arithmetic is imprecise, we cannot tell for sure whether
a certain case is degenerate or close to be one. Thus we use the term potential de-
generacy. In what follows we sometimes drop the word potential before the word
degeneracy. We refer by robustness to the general goal of making geometric algo-
rithms robust to the above obstacles, namely making the implementations reliable
and insensitive to them. For more details on robustness see, e.g., [23, 33, 35, 42|.

Many algorithms in computational geometry are designed and proven in a compu-
tational model that assumes exact arithmetic, while built-in number types are finite
and thus imprecise. While the use of finite-precision arithmetic is often efficient, it
is not robust when dealing with degenerate cases or near-degenerate ones. In such
cases the primitives may lead to erroneous results. This problem is especially compli-
cated for geometric algorithms because they operate on a mixture of numerical and
combinatorial data, whose consistency might be lost when using limited precision
arithmetic.

1.1. Robustness in Computational Geometry Algorithms 5

Ezact arithmetic number types have been developed in recent years to cope with
robustness in computational geometry [3, 29, 40]. They provide exact and more robust
implementations but suffer from two major disadvantages. The first one is that they
are more costly in time and space. The second is that certain primitives (such as
trigonometric functions) are very hard to implement and are often not implemented
at all.

There are adaptive evaluation schemes that try to speed up running time and
maintain exactness at the same time. One form is the floating-point filter which
applies exact arithmetic only when determining answers with floating-point is not
possible [10, 17, 28, 29, 37].

Degeneracies occur when the algorithm needs a special treatment (for example
the collinearity of three points). While most algorithms assume general position,
namely assume that degeneracies do not occur, the problem of dealing with degen-
eracies is left to the implementor who finds that this problem is very complicated,
and requires considerable resources. An effort to deal with degeneracies directly for
certain problems is sometimes a viable solution [4, 15].

Another kind of effort to deal with degeneracies is by symbolic perturbation. The
idea is to remove degenerate cases by replacing each coordinate of every input object
by a polynomial in a sufficient small £ symbolically, while maintaining consistency of
the input data [11, 12, 36, 41].

Heuristic Epsilon is another approach to coping with robustness issues. The idea
is to treat the values whose difference is smaller than a small parameter € as equal.
It is very simple to implement, but suffers from the fact that the relation of equality
is not transitive [22, 40].

Finite-Precision Approximation The focus of the thesis. A Finite-Precision
Approzimation is a class of preprocessing procedures that perturb the input data to
make it more robust for the algorithm. The goal of most of them is to remove degen-
eracies whose identification is not definite. Thus the algorithms can in fact assume
general position. Often such preprocessing procedures are used to convert the input
data into a low-precision representation (such as Snap Rounding — see Chapter 2).
A justification for this scheme is that most likely the input data are obtained by
measuring real world objects which might be imprecise. Thus, if the perturbation is
significantly smaller than the possible measurement errors, it should not effect the
correctness of the algorithm. Unlike other techniques to deal with robustness issues,
such as arbitrary precision number types, finite-precision approximation algorithms
are designed only for certain types of objects. There are finite-precision approxima-
tion algorithms that may also change the type of the data. For example in Snap
Rounding (see Chapter 2), a segment might be transformed into a polygonal chain.
It requires that algorithms that follow can cope with the new type of objects. In the
sequel we survey related work done in specific areas of finite-precision approximation.
In Chapter 2 we describe work done on Snap Rounding and in Chapter 7 we refer

1.2. Software Libraries for Robust Geometric Computing 6

to work on Controlled Perturbation. Additional techniques that fall in this category
appear, for example, in [31, 32, 39].

1.2 Software Libraries for Robust Geometric Com-
puting

In order to support the robust use of geometric algorithms, several computational
geometry groups have implemented robust geometric libraries. We focus on two
which are closely related to the work of this thesis.

CGAL - the Computational Geometry Algorithm Library. CGAL is a col-
laborative effort of several academic institutes in Europe and Israel to develop a C+-+
software library of robust geometric data structures and algorithms [6, 14, 13]. The
major goals of the library are robustness, generality, flexibility, efficiency and ease-of-
use. The goals are achieved by applying both object-oriented programming and the
generic programing paradigm. The algorithms we describe in this work have been
implemented with a substantial use of CGAL capabilities — see Chapter 5 for details.
Our Tterated Snap Rounding package has been completely “CGALized” as a part of
the effort of supplying robust implementation of geometric algorithms. For additional
experimental research which extensively uses the CGAL library see [15, 23, 26, 33, 34].

LEDA - the Library of Efficient Data Structures and Algorithms. A library
of efficient data structures and algorithms and a platform for combinatorial and ge-
ometric computing on which application programs can be built [29, 30]. It supplies
modules such as graph algorithms, geometric objects and algorithms or graphical
I/O which cover a considerable part of combinatorial and geometric computing. Our
implementations mainly use LEDA’s arbitrary precision number types, graphical win-
dow and graphical output to a postscript file. These capabilities are used extensively
by other CGAL implementations too.

1.3 Thesis Outline

In this thesis we present two algorithms to perturb arrangements of line segments in
IR? in order to make them more robust for further manipulation. Line segments in
IR? are the basis of a huge number of algorithms in computational geometry as well
as other fields that deal with geometric data such as computer graphics, computer-
aided geometric design, and more. Our perturbation algorithms are categorized as
finite-precision approximation algorithms. Both of them serve as a preprocessing step
for geometric algorithms. We implemented both algorithms and present experimental
results obtained with the implementation. The first one, Iterated Snap Rounding, is

1.3. Thesis Outline 7

a variant of the well known Snap Rounding algorithm and the second one, Controlled
Perturbation of Line Segments, is an instance of the Controlled Perturbation scheme,
which follows other instances that deal with different kinds of geometric objects.
Below we outline both new algorithms.

Iterated Snap Rounding. We point out that in a snap-rounded arrangement (see
Chapter 2) the distance between a vertex and a non-incident edge can be extremely
small compared with the width of a pixel in the grid used for rounding. We propose
and analyze an augmented procedure, Iterated Snap Rounding, which rounds the ar-
rangement such that each vertex is at least half-the-width-of-a-pixel away from any
non-incident edge. Iterated snap rounding preserves the topology of the original ar-
rangement in the same sense that the original scheme does. However, the guaranteed
quality of the approximation degrades. Thus each scheme may be suitable in different
situations. We describe an implementation of both schemes. In our implementation
we substitute an intricate data structure for segment/pixel intersection that is used
to obtain good worst-case resource bounds for Iterated Snap Rounding by a simple
and effective data structure which is a cluster of kd-trees. A paper describing Iterated
Snap Rounding was accepted for publication [24].

Controlled Perturbation of Line Segments. We present a perturbation scheme
to overcome degeneracies and precision problems in computing an arrangement of
line segments in IR?. The idea behind this scheme is that the output set of line
segments (set, for brevity) is built incrementally by inserting the segments to the set,
each one in its turn, after possibly perturbing them in order to remove degeneracies
that they induce. Thus the arrangement of the set that we build is degeneracy-free.
The algorithm follows a scheme named Controlled Perturbation — see Chapter 7 for
details.

The rest of the thesis is organized as follows. We divide it into two main parts:
Iterated Snap Rounding and Controlled Perturbation of Line Segments. In the next
chapter we describe the Snap Rounding scheme and the work that has been done in
this area. In Chapter 3 we present our novel scheme which we call Iterated Snap
Rounding. In Chapter 4 we present c-Oriented kd-Trees which constitute an efficient
search structure we use in the implementation of Iterated Snap Rounding, and de-
scribe other implementation details in Chapter 5. In Chapter 6 we experimentally
compare Snap Rounding and Iterated Snap Rounding. In Chapter 7 we describe the
Controlled Perturbation scheme and the work that has been done in this area. In
Chapter 8 we present Controlled Perturbation of line segments in IR?> and describe
implementation details in Chapter 9. In Chapter 10 we present experimental results
for Controlled Perturbation of line segments. Concluding remarks and possible di-
rections for future work are given in Chapter 12. In Apendix A we supply further
technical details concerning the analysis of the Controlled Perturbation algorithm.

Part 1

Iterated Snap Rounding

Chapter 2

Snap Rounding

Snap Rounding is a method that belongs to the family of finite-precision approxi-
mation of geometric structures. It converts an arrangement of line segments into a
low-precision representation.

Given a finite collection S of segments in the plane, the arrangement of S, de-
noted A(S), is the subdivision of the plane into vertices, edges, and faces induced by
S. A verter of the arrangement is either a segment endpoint or the intersection of
two or more segments. Given an arrangement of segments whose vertices are repre-
sented with arbitrary-precision coordinates, Snap Rounding (SR, for short) proceeds
as follows [19, 27]. We tile the plane with a grid of unit squares, pizels, each centered
at a point with integer coordinates. A pixel is hot if it contains a vertex of the ar-
rangement. Fach vertex of the arrangement is replaced by the center of the hot pixel
containing it and each edge e is replaced by the polygonal chain through the centers
of the hot pixels met by e, in the same order as they are met by e. See Figure 2 for
an illustration.

In the process, vertices and edges of the original arrangement may have collapsed.
However, the rounded arrangement preserves certain topological properties of the orig-
inal arrangement: The rounding can be viewed as a continuous process of deforming
curves (the original segments into chains) such that no vertex of the arrangement ever
crosses through a curve [21] (see Figure 2.2 for an illustration). The rounded version
s’ of an original segment s approximates s such that s’ lies within the Minkowski sum
of s and a pixel centered at the origin.

Related Work. Greene and Yao [20] were the first to propose a rounding scheme for
polygonal subdivisions. They show that a simple rounding to the closest grid points
violates topological properties and therefore a more sophisticated approach should be
taken. They developed a method for perturbing lines slightly at grid points. They do
that by introducing the notion of hooks. A hook is a vector from a point to its nearest
grid point. The idea behind their method is that intersections between segments, as
well as intersections between segments and hooks, are rounded. This rounding scheme

10

11

T\J\7L ; ;

o

Figure 2.1: An arrangement of segments before (a) and after (b) snap rounding (hot
pixels are shaded)

Lot

_‘7L,__

Figure 2.2: Two examples of topology violation that are ruled out in SR

12

is accomplished without violating many of the topological properties. This method
provides a link between the continuous and the discrete domain. The problematic
aspect is that the number of links of a polyline (namely the number of segments the
polyline is composed of), which is the output for a segment, can be large. It can be
much greater than the same number for SR since the idea of SR to break segments
where they intersect hot pixels eliminates the extraneous intersections. The time
complexity of the method is O((n + k)logn + h;) where n is the number of input
segments, k is the number of intersections among the input segments and h; is the
number of induced hooks.

Hobby [27] and Greene [19] proposed the SR paradigm. Hobby’s algorithm [27] for
SR is based on the Bentley-Ottmann sweep line algorithm for finding intersections of
line segments (although other algorithms can be applied as well). During the sweep
they round the arrangement by utilizing many properties of the hot pixels. The time
complexity of the algorithm is O((n + k)logn + >, |h|) where n is the number of
input segments, k is the number of intersections among the input segments, H is the
set of hot pixels and |h| is the number of segments intersecting a hot pixel h.

Guibas and Marimont [21] give a dynamic algorithm for snap rounding an arrange-
ment of segments in the sense that segments can be inserted or removed dynamically
from the SR representation. They do it by using ideas from Mulmuley’s dynamic
incremental construction algorithm of a point location structure based on trapezoidal
decomposition of the arrangement, while maintaining (and producing) only the SR
representation of the arrangement of the current segments. They also give elementary
proofs of the topological properties maintained by SR.

Goodrich et al. [18] present an output sensitive algorithm for SR without first
determining all the intersection pairs of segments in the input. The main idea is
to improve the running time of the algorithm when many segments intersect in a
hot pixel. Let b be the number of segments intersecting inside a pixel. The former
methods had a overhead time of Q(b?) while here the overhead time is O(blogb). Thus
the time complexity depends on the number of segments and the complexity inside
hot pixels and it is O(nlogn +), |h|logn) where the parameters are defined as
above. They present two algorithms: the first one is deterministic with the above
time complexity and the second one is randomized with the same expected running
time. The first one is based on a plane sweep strategy with special treatment to
hot pixels in order to find all the segments that intersect it. The second one is
based on dynamically maintaining a trapezoidal decomposition of both segments and
boundaries of hot pixels. They also extend SR to a set of line segments in IR* and
give an output-sensitive algorithm to compute rounded arrangements. The idea is to
round segments to voxels grid. Unlike snap rounding in IR?, segments that almost
intersect might induce a hot voxel and thus are rounded to its center. It is done by
defining a connector to be the smallest segment connecting two given segments. Hot
voxels are defined as the ones that contain segments’ endpoints or connectors which
are smaller than one unit. Then all segments are rounded to hot voxels.

Fortune [16] extends SR to three dimensions. The input to his algorithm is a

13

polyhedral subdivision P in R? with a total of n facets. He shows that there is an
embedding of the vertices, edges, and facets of P into a subdivision (), where every
vertex coordinate of () is an integral multiple of 2~ °&27+21 The embedding preserves
or collapses vertical order on faces of P. The subdivision @ has O(n?) vertices in the
worst case, and can be computed in the same time.

Chapter 3

Iterated Snap Rounding

3.1 The Distance Between a Vertex and a Non-Incident
Edge

We first claim that degeneracies may be induced in the output of SR. The main moti-
vation of the ISR algorithm that we present next, is to eliminate those degeneracies.

Consider the two segments s, ¢ displayed in Figure 3.1 before and after SR. We
denote the right endpoint of s’ by s.. (Recall that «’ is the rounded version of wu.)
After rounding, ¢’ penetrates the hot pixel containing s, but it does not pass through
its center.

We can modify the input segment ¢ so that ¢’ becomes very close to s.: we move
the left endpoint of ¢ arbitrarily close to the top right corner of the pixel containing
it. We vertically translate the right endpoint of ¢ far downwards (outside its original
pixel) —the farther down we translate it, the closer ¢ will be to s..

Figure 3.1: A vertex becomes very close to a non-incident edge after (b) snap rounding

We cannot make t' arbitrarily close to s.. If they are not incident then there is
a lower bound on the distance between them. This distance, however, can be rather
small. Let b denote the number of bits in the representation of the vertex coordinates
of the output chains of SR. We tile a bounding square of the arrangement with 2° x 2°
unit pixels. In this setting the distance between ¢ and s/ can be made as small as

14

3.2. Algorithm 15

Figure 3.2: Tterated snap rounding for the input (a) results in (d)

1/3/(20 =12+ 1~ 270

One could argue that although SR produces near-degenerate output, it is still pos-
sible, during the rounding process, to determine the correct topology of the rounded
arrangement in the hot pixel containing s/.. However, this requires that the output
of SR should include additional information beyond the simple listing of polygonal
chains specified by their rounded vertices, making it more cumbersome to use and
further manipulate.

3.2 Algorithm

We augment SR to eliminate the near-degeneracies mentioned above. Our procedure,
which we call iterated snap rounding (ISR, for short), produces a rounded arrangement
where an original segment is substituted by a polygonal chain each vertex of which is
at least 1/2 a unit distant from any non-incident edge.

Let § = {s1,52,...,5,} be the collection of input segments whose arrangement
we wish to round. Recall that a pixel is hot if and only if it contains a vertex of the
input arrangement. Let H denote the set of hot pixels induced by A(S).

Our goal is to create chains out of the input segments such that a chain that passes
through a hot pixel is re-routed to pass through the pixel’s center. The difficulty is
that once we reroute a chain it may have entered other hot pixels and we need to
further reroute it, and so on.

Our rounding algorithm consists of two stages. In a preprocessing stage we com-
pute the hot pixels (by finding all the vertices of the arrangement) and prepare a
segment intersection search structure D on the hot pixels to answer queries of the
following type: Given a segment s, report the hot pixels that s intersects. In the
second stage we operate a recursive procedure, REROUTE, on each input segment.
We postpone the algorithmic details of the preprocessing stage to the next sections
and concentrate here on the rerouting stage.

REROUTE is a “depth-first” procedure. As we show below, the rerouting that we

3.2. Algorithm 16

propose does not add more hot pixels, so whenever we refer to the set of hot pixels
we mean H. The input to REROUTE is a segment s € S. The output is a polygonal
chain s* which approximates s. Whenever s* passes through a hot pixel, it passes
through its center. See Figure 3.2 for an illustration.

We next describe the ISR algorithm. The routine REROUTE will produce an
output chain s in the global parameter OUTPUT _ CHAIN as an ordered list of links.
If a segment is contained inside a single pixel, the chain degenerates to a single point.

ISR

Input: a set S of n segments

Output: a set 8* of n polygonal chains; initially S* = ()
/* stage 1: preprocessing */

1. compute the set H of hot pixels

2. construct a segment intersection search structure D on H
/* stage 2: rerouting */

3. for each input segment s € S

4. initialize OUTPUT _CHAIN to be empty

5. REROUTE(s)

6. add OUTPUT _CHAIN to &*

7. end for

REROUTE(S)

/* s is the input segment with endpoints p and ¢ */

1. query D to find Hj, the set of hot pixels intersected by s

2. if H, contains a single hot pixel /* s is entirely inside a pixel */

3. then add the center of the hot pixel containing s to OUTPUT _ CHAIN
4. else
5 let mq, ma, ..., m, be the centers of the r hot pixels in H, in the order
of the intersection along s

6 if (r =2 and p, ¢ are centers of pixels)

7. then add the link m7ms to OUTPUT _ CHAIN
8 else

9 fori=1tor—1

10. REROUTE(m;m;11)

We next discuss the properties of the procedure.

We fix an orientation for each input segment and its induced chains: it is oriented
in lexicographically increasing order of its vertices. Thus, a non-vertical segment for
example is oriented from its left endpoint to its right endpoint. (The orientation of
a chain is well defined since, as is easily verified, a chain is (weakly) z-monotone
and (weakly) y-monotone.) We represent the operation of REROUTE on a segment
s; as a tree T;. The root contains s;. The leaves of the tree contain the output

polygonal chain s}, one link in each node, ordered from left to right where the first

3.2. Algorithm 17

Figure 3.3: The tree T} corresponding to REROUTE(s;) for s; of Figure 3.2. Nodes
denoted by full-line circles contain segments with which we query the structure D.
The dashed-line circle denotes a node containing an exact copy of the segment of its
parent.

link is in the leftmost leaf. Each internal node v together with its children represent
one application of REROUTE (without recurrence): the segment s of v, which passes
through the hot pixels with centers mi, ms,...,m,, is transformed into the links
MgMgy1,q = 1,...,7 — 1 which are placed in the children of v ordered from left to
right to preserve the orientation of the chain. We denote all the segments in the nodes
at the jth level from left to right by s7' s7° ..., sg’li’j, where /; ; denotes the number
of nodes at this level. We denote the chain consisting of all the links at level j ordered
from left to right by s/. Thus s = s;. We denote by k; the depth of the tree for s;,
and let k := max} , k;. For notational convenience, if a leaf) is at level ky < k then
we add a linear path of k; — k artificial nodes descending from A and all containing
the same link that A contains (we denote it differently at any level according to the
level). See Figure 3.3 for an illustration of the tree T corresponding to segment s; of
Figure 3.2. We denote by s(v) the segment (or link) that is contained in the node v.

The next lemma gives an alternative view of ISR.

Lemma 3.1 Given a set of segments S, the output of ISR is equivalent to the final
output of a finite series of applications of SR starting with S, where the output of one
SR is the input to the next SR.

Proof: Once we determine the hot pixels H, snap rounding an input segment s (i.e.,
by the standard SR) can be done independently of the other segments. That is, the
information necessary for rounding is in H. Notice that the chains s/, = 1,...,n
are the result of applying SR to the original input segments S.

The crucial observation is that SR does not create new hot pixels. It can break
a segment into two segments that meet at the center of an existing hot pixel, but it
cannot create a new endpoint nor a new intersection point (with another segment)

3.2. Algorithm 18

which are not at the center of an existing hot pixel—this would violate the topology
preservation properties of SR [21].

It follows that with the same set H of hot pixels, the chains s{“,i =1,...,n are
the result of applying SR to the links in the chains s},7 =1,...,n, and so on.

The process terminates when the link in each leaf of the tree has its endpoints
in the center of hot pixels and it does not cross any other hot pixel besides the hot
pixels that contain its endpoints.

The tree continues to grow beyond level j only as long as for at least one node v
in level j when we query with s(v) we discover a new hot pixel through which s(v)
passes. We claim that a hot pixel is not discovered more than once per tree. This is
so since, as already mentioned, each chain s/ is (weakly) z-monotone and (weakly)
y-monotone. Since there are at most O(n?) hot pixels, the process will stop after a
finite number of steps. 0J

The lemma’s algorithmic interpretation is inefficient, but it is useful for proving
some of the following properties.

Corollary 3.2 ISR preserves the topology of the arrangement of the input segments
in the same sense that SR does.

Proof: The topological properties that are preserved by SR can be summarized by
viewing SR as a continuous process of deforming curves (the original segments into
chains) such that no vertex of the arrangement ever crosses through a curve [21].
Since SR does not create new vertices, the assertion follows from Lemma 3.1. O

Lemma 3.3 (i) If an output chain of ISR passes through a hot pizel then it passes
through its center.

(ii) In the output chains each vertex is at least 1/2 a unit away from any non-incident
segment.

Proof: Claim (i) follows from the definition of the procedure REROUTE. Since all
the vertices of the rounded arrangement are centers of hot pixels, claim (ii) is an
immediate consequence of (i). O

A drawback of ISR is that an output chain s; can be farther away from the
original segment s; compared with the chain produced for the same input segment by
SR. Recall that k; denotes the depth of the recursion of REROUTE(s;).

Lemma 3.4 A final chain s} lies in the Minkowski sum of s; and a square of side
size k; centered at the origin.

3.3. Algorithmic Details and Complexity Analysis 19

Proof: 1In SR, a rounded segment s’ lies inside the Minkowski sum of the input
segment s and a unit square centered at the origin. Since ISR is equivalent to k;
applications of SR, the claim follows. O

This deviation may be acceptable in situations where the pixel size is sufficiently
small or when £ := max]_, k; is small.

3.3 Algorithmic Details and Complexity Analysis

Let I denote the number of intersection points of segments in the original arrange-
ment A(S). We first compute the set H of hot pixels. For that we use an algorithm
for segment intersection. This could be done with a plane sweep algorithm, or more
efficiently in O(I + nlogn) time by more involved algorithms |2, 7]. To compute the
hot pixels, the algorithm should also be given a pixel’s width w and a point p that
will be assigned the coordinate (0,0). The plane will be tiled with pixels that we
will consider to be of unit width, and their centers will have integer coordinates. We
denote the number of hot pixels by N. Notice that N is at most O(n + I).

Remark. One could alternatively detect the hot pixels by the SR algorithm of
Goodrich et al. [18] and thus get rid of the dependence of the running time of the
algorithm on the number of intersections I. Notice however that for this step alone
(namely for detecting the hot pixels) and for certain inputs (e.g., the input depicted
in Figure 3.4 and described below) this alternative is costly.

Next we prepare the data structure D on the hot pixels H to answer segment inter-
section queries. We construct a multi-level partition tree [1] on the vertical boundary
segments of the hot pixels, and an analogous tree for the horizontal boundary seg-
ments. The partition trees report the segments intersected by a query segment s
from which we deduce the hot pixels intersected by s. Each tree requires O(M'*)
preprocessing time when allowed M units of storage for N < M < N2. A query takes
O(N'¢/v/M + g) time, where g is the number of hot pixels found [1].

How many times do we query the structure D for segment intersection?

Lemma 3.5 If an output chain s} consists of l; links then during REROUTE(s;) the
structure D is queried at most 2l; times.

Proof: During REROUTE(s;) when we query with a link (line 1 of REROUTE) either
we do not find new hot pixels (new for the rounded version of s;) in which case we
charge the query to the link which is then a link of the final chain, or we charge it to
the first new hot pixel (recall that we assigned an orientation to each segment and to
each link). Each final link is charged exactly once and each vertex of the final chain
is charged at most once, besides the last vertex which is never charged. The bound

3.3. Algorithmic Details and Complexity Analysis 20

follows. O

Let L denote the overall number of links in all the chains output by ISR. We
summarize the performance bounds of ISR in the following theorem.

Theorem 3.6 Given an arrangement of n segments with I intersection points, the
iterated snap rounding algorithm requires O(nlogn + I + L¥3N?/3t¢ 1 L) time for
any € > 0 and O(n + N + L*>3N?/3+¢) working storage , where N is the number of
hot pizels (which is at most 2n+1) and L is the overall number of links in the chains
produced by the algorithm.

Proof: To find the intersections of the input segments we use Balaban’s algorithm
which requires O(nlogn + I) time and O(n) working storage. When an intersection
is found we simply keep its corresponding hot pixel. For constructing and querying
the multi-level partition trees (by Lemma 3.5 we perform at most 2L queries overall)
we use a standard trick that balances between the preprocessing time and the overall
query time, and does not require that we know the number of queries in advance.
See, e.g., [8]. O

Next we discuss combinatorial bounds on the maximum complexity of the rounded
arrangements. Interestingly, as shown next, there is no difference between the maxi-
mum asymptotic complexity of the rounded arrangements between SR and ISR.

Theorem 3.7' Given an arrangement of n segments in the plane, in its rounded
version: (i) the mazimum number of hot pizels through which a single output chain
passes is O(n?), and (i) the mazimum overall number of incidences between output
chains and hot pizels is ©(n?). (iii) The mazimum number of segments in the rounded
arrangement (namely without counting multiplicities) is ©(n?), and if the input seg-
ments induce N hot pizels then this number is ©(N). All these bounds apply both to
SR and to ISR.

Proof: The upper bounds in claims (i) and (ii) are obvious. To see that these
bounds are tight consider the following construction (see Figure 3.4). We take n/2
long horizontal segments spanning a row of n?/4 pixels. Next we take n/2 short,
slightly slanted segments, each spanning n/2 pixels such that overall each pixel in the
row is intersected by exactly one short segment. The short segments are slanted such
that in each pixel that they cross they intersect exactly one of the long segments.
Each pixel in the row is now a hot pixel, and each of the long segments crosses all
the hot pixels. The rounding obtained with both SR and ISR is the same.

!The slanted version of our horizontal construction was suggested to us by Olivier Devillers.
Claim (iii) is due to Mark de Berg.

3.3. Algorithmic Details and Complexity Analysis 21

Figure 3.4: ©(n) chains in the rounded arrangement are each incident to ©(n?) hot
pixels

=

=

Figure 3.5: The slanted version yields ©(n) rounded segments with ©(n?) links each

The construction yields a degenerate rounded arrangement. Each of the output
chains is in fact a horizontal line segment. This construction can be slanted so that
each rounded version of a long segment is a chain with “true” Q(n?) links. In the
slanted version we use n?/2 pixels arranged in n?/4 rows. In each row at least one
pixel is hot. See Figure 3.5 for an illustration.

Finally, we ignore the chains, and we ask how complex can the rounded arrange-
ment be, that is, we ignore multiplicities (overlap) of chains. Obviously, the rounded
arrangement can have Q(n?) complexity. But this is also an upper bound since the
(rounded) arrangement has N vertices and it is a planar graph. Therefore the number
of edges can be at most O(N). N can be at most O(n?). Again, our arguments do
not depend on how the rounding was done (by SR or ISR). O

We conclude this section with a worst-case tight bound on the distance between
an original segment and its output chain produced by ISR.

Theorem 3.8 The maximum distance between an input segment and its output chain

is O(n?).

Proof: Recall that n is the number of segments in the input. Let d be the distance
between a certain input segment and its output chain. Since there are at most O(n?)
hot pixels and each one may add at most \/5/2 units to d, the upper bound follows.
To see that this bound is tight, consider Figure 3.6(a)’. There are n — 1 segments ar-
ranged vertically similar to the construction in Figure 3.4, inducing ©(n?) hot pixels.

2A similar idea that is improved by this example was suggested by Shai Hirsh.

3.3. Algorithmic Details and Complexity Analysis 22

We refer to this construction as W. The segments of W together with the segment we
add below compose the input. The center of the lowest hot pixel in W is at (0, 0) while
the highest one is at (0, a) where a = ©(n?) and even. We add a segment with integer
coordinates s = ((0,a), (b,0)) (meaning that the endpoints of s are (0,a) and (b,0))
where b = g. There are no other segments in the input besides the ones involved in W
and s. Thus there are no hot pixels lying to the right of VV beside the one centered at
(b,0). Let s* be the output chain for s. Notice that for each ¢, b < ¢ < a, the segment
((0,¢), (b,0)) intersects the hot pixel whose center is at (0,c — 1). Therefore during
the process of ISR, s* will slide down W, each time penetrating more hot pixels from
below. The work on s* stops when reaching the hot pixel whose center is at (0,6 —1).
Thus s* will be composed of the chain (0,a), (0,a —1)...(0,b),(0,b — 1), (b,0) (see
Figure 3.6 for an illustration). It is easy to verify that the distance from (0,6 — 1)
(which is a vertex of s*) to s is (n?). The claim follows. O

(TITTTTF]

(a) (b)

Figure 3.6: An input example for which the maximum distance between the input
(a) and the output chain of ISR (b) is Q(n?)

Chapter 4

c-Oriented Kd-Trees

In our implementation we use a plane sweep algorithm to find the intersections be-
tween segments in S and thus we identify the hot pixels. The non-trivial part to
implement is the search structure D with which we answer segment/pixel intersec-
tion queries. In the theoretical analysis we use partition trees for D, as these lead to
asymptotically good worst-case complexity. In practice, (multi-level) partition trees
are difficult to implement. Instead, we implemented a data structure consisting of
several kd-trees. Next we explain the details.

Observation 4.1 A segment s intersects a pizel p of width w, if and only if the
Minkowski sum of s with a pizel of width w centered at the origin contains the center

of p.

We could use Observation 4.1 in order to answer segment intersection queries in
the following way: build a range search structure on the centers of the hot pixels.
Let s be the query segment and M (s) be its Minkowski sum with a pixel centered at
the origin. Then query the structure with the range M(s). Unfortunately, the known
data structures for this type of queries are similar to the multi-level data structures
that we have used in Chapter 3.

Instead we use kd-trees as an approximation of this scheme. A kd-tree answers
range queries for axis-parallel rectangles [9]. Its guaranteed worst-case query time is
far from optimal but it is practically efficient. A trivial solution would be to query
with the axis-parallel bounding box of M (s), which we denote by B(s); see Figure 4.1.
This may not be sufficiently satisfactory since the area of B(s), which we denote by
|B(s)|, may be much larger than the area of M(s).

If we rotate the plane together with M (s) the (area of the) axis-parallel bounding
box changes whereas M (s) remains fixed. The difference between the bounding boxes
for two different rotations can be huge. Our goal is to produce a number of rotated
copies of the set of centers of hot pixels so that for each query segment s there will be
one rotation for which the area of the bounding box is not too much different from

23

24

Figure 4.1: The bounding box of the Minkowski sum of a segment with a pixel
centered at the origin. The shaded area is the redundant range.

the area of M (s). Notice that if a segment s is rotated by /2 radians, the size of the
relevant bounding box remains the same. Since the determination of which rotation
to choose is dependent only on the size of the respective bounding box, the range of
rotations should be the half-open interval [0 : 7/2).

We construct a collection of kd-trees each serving as a range search structure for a
rotated copy of the centers of hot pixels. We call this cluster c-oriented kd-trees. Let
c be a positive integer and let o; := (i — 1) for 1 <4 < ¢. The structure consists
of ¢ kd-trees such that the i-th kd-tree, denoted by kd;, has the input points rotated
by ;. Let R;(s) be the segment s rotated by «;. For each query with segment s we
do the following: for each kd;, 1 < i < ¢, we compute |B(R;(s))|. Let 1 < h < ¢ be
the serial number of the kd-tree for which |B(R(s))| = min{_, |B(R;(s))|. Then we
use the hA-th kd-tree to answer the query with the segment s rotated by «ay. Finally,
we discard all the points for which the segment does not intersect the respective hot

pixels.

We next discuss a few important issues regarding the implementation and usage
of this structure.

Exact rotations. We used exact arithmetic to implement ISR. Unfortunately, the
available exact arithmetic number types do not support the calculations of sines and
cosines which are necessary for calculating rotations. Instead we use only angles
for which the sines and cosines can be expressed as rational numbers with small
enumerator and denominator [5]. We keep an array Z of approximations to the sines
of integer degree angles between 0 — 89. We emphasize that once we fix an angle
£ we have the exact sine and cosine of 5. What we cannot do is obtain the exact
values of the trigonometric functions of a prescribed arbitrary angle. Since our choice
of rotation angles is heuristic to begin with, the precise angle is immaterial, and the
angle we use is never more than one degree off the prescribed angle. Moreover, there
are techniques to achieve better approximations [5|, but we prefer not to use them
because of performance reasons.

25

How big should ¢ be? There are advantages and drawbacks in using few kd-tress,
say even one kd-tree compared to using many. When using one kd-tree, we are prone
to get many false points in the range queries, resulting in more time to filter out the
results. When using many kd-trees, we need to invest time in their construction and
a little more time per query to find the best rotation. Our experiments show that in
many cases a small number of trees suffices. Consider for example the numerical table
“different number of kd-trees” in Figure 6.1. (The rounding example in this figure as
well as the other examples are explained in detail in Chapter 6; here we only refer to
the number of kd-trees used in their computation.) The first column shows how many
kd-trees were used and the last column shows how much time the overall rerouting
stage took compared with the time when using only one kd-tree (the full legend is
given in Table 10.1). The best performance is obtained when we use 7 kd-trees. The
time savings in this case is 17% over using a single kd-tree. The analogous table in
the next example (Figure 6.2) shows that in that example there is no benefit in using
more than one kd-tree.! In the next paragraph we present a heuristic improvement
of the number of kd-trees. However, we leave the computation of the best number of
kd-trees together with the best rotation angles of each one for further research.

Skipping kd;’s. Since ¢ should be small, we expect most of the links of a certain

input segment to have the same rotation as the input segment, since they should all

have nearby slopes. Let .J; be the number of input segments that are rotated by «;.

If J; is very small, it is not effective to create the respective kd-tree. Thus we fix

a lower limit 7, and construct a kd-tree kd; only if J; > 7. Obviously 7 should be

a function of ¢, and be sufficiently small to ensure that at least one kd-tree will be
n

constructed. We chose to use 7 = 5-. In the examples of Figures 6.1 and 6.2 J; is

always greater than -. In other examples, such as geographic data, not all ¢ trees
are always constructed—in Figure 6.3, when the algorithm is given ¢ > 7 it chooses
to skip some of the kd;’s. In this example, using more than one kd-tree is wasteful
since the map is relatively sparse, most of the segments are relatively small compared
to the whole map and the bounding box of their Minkowski sum with a unit pixel

does not intersect many hot pixels centers.

!The running time indicated in the tables is in seconds while using arbitrary precision rational
arithmetic. The pixel size in the first example is 1 and in the second example is 15.

Chapter 5

Implementation Details

We implemented ISR in C+-+, using many capabilities of CGAL [6]. The package
defines a C++ class to work on [38]. The programmer uses our package by creating
instances of the class. The implementation is generic in the sense that each class
is templated with a number type of which the data are composed. The user of our
software chooses which number type to apply with the template mechanism of the
C++ language.

The main input of the package is a set of line segments while the output is a set
of polygonal chains.

The user can choose the output format. It can be either a text file describing the
output or a graphic window in which both the input and the output are drawn (the
graphic window is the LEDA window [29]).

Except for CGAL capabilities that we explicitly mention, we applied other CGAL
elements such as geometric predicates, points, segment, vector and intersection oper-
ations.

The package supports both ISR and SR. It is up to the user to decide which
one to apply. The way to convert the ISR algorithm to SR is simply to constrain
the recursion depth of the Reroute routine to one (see Chapter 3), meaning that
the output polygonal chains are determined immediately by the hot pixels that the
original segments intersect.

ISR and SR are conveniently implemented with an exact number type, otherwise
the topology of the input line segments may be violated. We implemented ISR with
the Leda rational number type [29]. It is possible that under certain assumptions, SR
and ISR may be implemented with finite-precision arithmetic.

Recall that we use the c-oriented kd-trees as our search structure (see Chapter 4).
As a first step for creating the c-oriented kd-trees, we have to find the hot pixels.
This is done by applying a plane sweep algorithm [6]. For that we use the plane
sweep package of CGAL. Recall that the c-oriented kd-trees are composed of several
kd-trees. We use the kd-tree package of CGAL to implement that. The user can

26

choose the number of trees to use.

The ISR package has become a part of CGAL.

27

Chapter 6

Rounding Examples: SR vs. ISR

To give the flavor of how the output of ISR differs from that of SR we present the
rounding results for three input examples; see Figures 6.1, 6.2, and 6.3. For each
example we display the input, the SR result and the ISR result. Then we zoom in
on a specific area of interest in these three drawings—an area where the rounding
schemes differ noticeably. A square near a drawing represents the actual pixel size
used for rounding. Then we provide two tables of statistics. The first one refers to
the best number of kd-trees as related to the discussion in the previous section. The
second table summarizes the differences in the rounding for different pixel sizes. The
abbreviations we use in these two tables are explained in Table 6.1. The deviation of
a chain from its inducing segment s is the maximal distance of a point on the chain
from s.

6.1 Congestion Data

The data contains 200 segments with 18, 674 intersections; see Figure 6.1. (For clarity,
the pictures in Figure 6.1 depict a similar example with only 100 segments.) The
bottom left part of the arrangement is zoomed in.

Both rounding schemes will collapse thin triangles that have two corners close
by. However, not allowing proximity between vertices and non-incident edges, ISR
collapses ‘skinny’ faces of the arrangement that SR does not (see the bottom of the
zoomed-in area), for example triangles that have one corner close to the middle of
the opposite edge.

For pixel size 1, SR and ISR are very different and the number of vertices that
are less than half a unit away from a non-incident edge in the SR output is in the
hundreds. The average deviation in ISR in this example is never more than 2.5
times that of the corresponding SR output. For pixel size greater than 1 the average
deviation of a chain in ISR is almost the same as in SR. However, for pixel size smaller
than 1, the average deviation is larger in the ISR output than in the SR output.

28

6.2. Triangulation Data 29

Abbreviation ‘ Explanation ‘

inkd input number of kd-trees

nkd actual number of kd-trees created

nfhp overall number of false hot pixels in all the queries

tt total time relative to using one tree

md maximum deviation over all chains

ad average deviation

mnv maximum number of vertices in an output chain

anv average number of vertices in an output chain

mdvs minimum distance between a vertex and a non-
incident edge

ncvs number of pairs of a vertex and a non-incident edge
that are less than half the width of a pixel apart

ps pixel size

nhp number of hot pixels

Table 6.1: Abbreviations

In terms of combinatorial complexity the results are similar and the average num-
ber of vertices per chain is roughly the same in both outputs. This is a phenomenon
we have observed in all our experiments.

6.2 Triangulation Data

Figure 6.2 shows a set of input points (courtesy of Jack Snoeyink) and a triangulation
of this set. The triangulation consists of 906 segments. The zoomed in pictures show
a part of the triangulation for which there is considerable difference between SR and
ISR.

Again ISR collapses thin polygons that SR does not collapse. The second table in
Figure 6.2 shows that in this case the average deviation of a chain in both schemes
does not differ by much. The maximum deviation in ISR is always less than twice
the pixel width. Here also the average number of links per chain is almost the same
for the output of SR and ISR.

6.3 Geographic Data

We ran both schemes on several geographic maps of countries and cities which are less
cluttered than the examples above. The experiments for this type of data typically
show little difference between the SR and ISR results. Figure 6.3 depicts the result
for a map of the USA. The data contains 486 segments intersecting only at endpoints.

The second table in Figure 6.3 shows the difference of using SR and ISR. In most

6.3. Geographic Data 30

of the tests, there are occasional cases in which the distance between a vertex and a
non-incident segment, is shorter than half the size of a pixel. Thus there are differences
between the SR and the ISR output. These differences are however minor. In the
ISR output the maximum deviation is no more than twice that of the SR output.
The average deviation in both the SR and ISR output is similar.

6.3. Geographic Data 31
SSS8000099 ¢
NGRS
RS
RS A
RBEKKS y \S y
RS _: :bg __C A
“' "" '.:Egggggissﬁs":“‘to EZ; g8 -ZZE E% h 1;- jis _::E {73 (
. oo | e i i ' _ngif
"t \\\\\\\\\\%‘\\{&“\\lﬂ Hi maete H Ht H HDXNPrH
&{{{\\\\\\\\“\\\\“ 7 P & 7 % s N
\§§‘\\\\§§§§\\§§e“= :% -E_LL/ . —a é I
SR output ISR output
I// v ey
/////// % %
/ ////// | U | U
7
e = 2 S
& =
N 7
=
J J J
Input zoom in SR output zoom in ISR output zoom in
| inkd | nkd | nfhp | tt |
1 1 613477 | 100% = 213.2 s
2 2 513551 87.2%
3 3 474997 83.6%
4 4 478749 84%
5 5 479507 84.3%
6 6 463025 83.4%
7 7 456882 83%
8 8 456269 84%
9 9 455334 84.8%
10 10 | 456196 86.3%
Different number of kd-trees
isr sr
ps nhp md ad | mnv anv mdvs | ncvs | md ad | mnv | anv | mdvs | ncvs
0.125 | 8488 || 1.01 | 0.19 | 120 90.96 0.08 0 0.09 | 0.09 | 106 | 87.95 | 0.04 17
0.25 | 8261 1.5 | 041 | 124 94.15 0.15 0 0.17 | 0.17 | 112 | 89.16 | 0.06 58
0.5 7711 || 1.68 | 0.67 | 135 97.9 0.28 0 0.35 | 0.35 | 126 | 91.66 | 0.08 135
1 6003 || 1.58 | 0.99 | 154 | 101.85 | 0.55 0 0.71 | 0.71 | 153 | 95.99 | 0.07 328
2 2538 || 1.51 | 1.41 | 101 72.9 1.26 0 1.41 | 1.41 | 101 | 72.87 | 0.88 3
3 1143 || 2.12 | 1.84 67 49.1 2.12 0 2.12 | 1.84 67 49.09 1.34 1
4 673 282 | 2.7 51 37.56 2.82 0 282 | 2.7 51 37.56 | 2.82 0
5 439 3.53 | 3.32 41 30.31 3.53 0 3.53 | 3.32 41 30.3 2.23 1
10 120 707 | 6.6 21 15.58 7.07 0 707 | 6.6 21 15.58 | 7.07 0

ISR and SR comparison (n = 200)

Figure 6.1: Congestion data

6.3. Geographic Data

Input points

Input triangulation

32

SR output

ISR output

[]

Input zoom in

[]

SR output zoom in

ISR output zoom in

| inkd | nkd | nfhp

tt

1

© 00~ O Ot = W N

—_
o

1

© 00~ O Ui W N

—
o

4872
4789
4852
4597
4487
4349
4349
4399
4419
4358

103.2%
102.6%
101.9%
102.6%
103.2%
102.6%
102.6%
103.2%
102.6%

100% = 154 s

Different number of kd-trees

1ST ST
ps | nhp md ad mnv | anv | mdvs | ncvs md ad mnv | anv | mdvs | ncvs
2 | 306 2.231 | 0.825 6 2.219 | 1.223 0 1.341 | 0.812 6 2.198 | 0.318 9
5 | 300 || 9.804 | 2.691 7 2.625 | 3.14 0 3.494 | 2.442 6 2.48 | 0.741 | 50
10 | 249 || 17.194 | 5.18 9 2.761 | 5.368 0 7.028 | 4.847 7 2.637 | 1.414 45
15 | 195 || 22.088 | 6.985 | 10 2.75 | 9.486 0 10.559 | 6.512 | 10 | 2.622 | 2.631 | 67
20 | 162 || 32.207 | 7.614 9 2.621 | 11.767 0 13.914 | 7.19 8 2.532 | 4.85 45

ISR and SR comparison

Figure 6.2: Triangulation data

6.3.

Geographic Data 33

SR output ISR output

L] L] [

Input zoom in SR output zoom in ISR output zoom in

| inkd | nkd | nthp

tt |

1 1 293 | 100% = 9.11 s
2 2 306 102%
3 3 302 103.1%
4 4 284 103.8%
5 5 293 105%
6 6 275 106%
7 7 260 106.8%
8 6 269 106.1%
9 8 272 107.9%
10 8 253 107.9%

Different number of kd-trees

isr sr

ps nhp md ad mnv | anv | mdvs | ncvs | md ad mnv | anv | mdvs | ncvs
0.125 | 486 || 0.097 | 0.088 4 2.098 | 0.111 0 0.088 | 0.088 4 2.096 | 0.045 1
0.25 | 485 || 0.353 | 0.177 5 2.113 | 0.196 0 0.176 | 0.176 5 2.107 | 0.039 2
0.5 | 480 || 0.392 | 0.353 4 2.104 | 0.377 0 0.353 | 0.353 4 2.100 | 0.039 2
1 475 || 1.414 | 0.715 5 2.137 | 0.569 0 0.707 | 0.707 5 2.115 | 0.196 3
2 432 || 2.236 | 1.063 5 2.137 | 1.264 0 1.414 | 1.043 5 2.102 | 0.392 9
3 379 || 3.807 | 1.353 5 2.037 | 2.121 0 2.121 | 1.336 5 2.020 | 1.341 2
4 338 || 3.333 | 1.764 6 1.991 | 2.828 0 2.828 | 1.758 5 1.983 | 1.264 2
5 299 || 4.735 | 2.124 5 1.897 | 3.535 0 3.535 | 2.110 4 1.884 | 1.581 3
10 177 || 10.606 | 3.732 5 1.615 | 7.071 0 7.071 | 3.696 5 1.602 | 7.071 0

ISR and SR comparison

Figure 6.3: Geographic data

6.3. Geographic Data

34

Part 11

Controlled Perturbation of Line
Segments

35

Chapter 7

Controlled Perturbation

Controlled Perturbation is another kind of finite-precision approximation technique.
More precisely, it is a framework whose details need to be worked out for different
kinds of objects. The name of this scheme is Controlled Perturbation since it is
controlled in two aspects. First, by determining the size of the perturbation, we
control the running time of the perturbation scheme and set a tradeoff between the
magnitude of the perturbation and the efficiency of the computation. Second, after
each object is processed, the perturbation algorithm guarantees that it induces no
degeneracies. Generally, the scheme proceeds as follows.

Let S = {s1, 2, ..., Sy} be the set of input objects. Each object s € S is inserted in
its turn. Possibly, each s € S is further divided into m > 1 parts, Q(s) = ¢1,42 - - * Gm,
ordered in a specific order determined by the algorithm. Then each part ¢ € Q(s)
is inserted in its turn. In each insertion we check if ¢ induces degeneracies with the
already inserted objects. (In what follows “an object induces degeneracies” always
refers to “with the already inserted objects”.) If not, it is inserted. Otherwise we have
to perturb g. We next describe how to do so in our algorithm (other algorithms of
this scheme apply similar ideas). We define the set Q(s) such that each ¢ € Q(s) has
a unique vertex, v,, which is perturbed if necessary in order to remove degeneracies.
We perturb v, in the following way. We define a disc C', centered at v, with a radius
r. r is computed such that when picking up a point p randomly inside C, we are
guaranteed that with a reasonable probability, ¢ (for example %), if we place v, at
p then the object ¢ attached to v, will not induce any degeneracies. We pick up a
placement for v, randomly inside C' and check if any degeneracy is induced. If not, ¢ is
inserted. Otherwise we continue choosing placements for v, in the same way until we
find a degeneracy-free placement. Since the probability to induce no degeneracies is
¢, we find a degeneracy-free perturbation after 1 trials on the average. The selection
of the parameter ¢ is a tradeoff between the size of the perturbation and the efficiency
of the computation. The larger ¢ is, the bigger the perturbation magnitude is, but
the probability of finding degenerate-free placement is greater, thus less trials on the
average should suffice. We set ¢ = % in our implementation.

36

37

Related Work. Halperin and Shelton [25] were the first to propose a Controlled
Perturbation algorithm. Their goal was the elimination of degeneracies induced by
collections of spheres in IR®*. They described a software package for computing and
manipulating the subdivision of a sphere and for computing the boundary surface of
the union of spheres. Their implementation was a component in a package aimed to
support geometric queries on molecular models. The excuse for the perturbation is
that the model is approximate to begin with. The time complexity of their method
is linear in the number of spheres in the input.

It was followed by Raab in |33, 34] who proposed a Controlled Perturbation algo-
rithm to eliminate degeneracies induced by polyhedral surfaces in IR*. The motivation
was to create a robust model for swept volume applications. A swept volume is defined
as the geometric space occupied by an object moving along a trajectory in a given
time interval. Her swept volume application computes the boundary of a collection
of three-dimensional polyhedra and employs vertical decomposition as its final step.

Chapter 8

Controlled Perturbation of Line
Segments

8.1 Introduction

In this chapter, we propose a Controlled Perturbation algorithm for arrangement of
line segments in R? (CPLS for short). CPLS follows the framework described in
Chapter 7. While this framework has been applied for collection of spheres [25] and
polyhedral surfaces [34], we propose a novel scheme of the framework, for arrange-
ments of line segments in IR?.

The idea of CPLS is to perturb the above arrangement into a robust representation
for further manipulation. This is done by eliminating degeneracies induced in the
arrangement. Degeneracies are eliminated by slightly perturbing some of the line
segments inducing them, creating degeneracy-free data.

8.2 Preliminaries and Key Ideas

We use the following notation throughout the chapter. S = {s1, s, ..., s,} is the set
of input line segments ordered arbitrarily. S; denotes the set of the first 7 segments
of S. For each s; € S we denote its endpoints by p; and ¢; (we relate to p; as the first
endpoint, and to ¢; as the second one; this choice is arbitrary). As we show later, the
perturbation of each s € S has two phases. In the first one p; is possibly perturbed.
We denote by p} the result of the first phase on p;, either perturbed or not. We denote
by s; the segment plg;. In the second phase, ¢; is possibly perturbed. We denote by
¢; the result of the second phase on ¢;, either perturbed or not. We denote by s/ the
segment plq). s! is the CPLS output for s;. Let S! = {s/,sh...s"} and A = S".
Then A is the output of CPLS, namely the set of the output segments produced by
CPLS.

38

8.2. Preliminaries and Key Ideas 39

The goal of CPLS is to eliminate degeneracies induced in arrangements of line
segments so that the algorithms that manipulate the input further will be robust. In
order to define a degeneracy formally, we use a resolution parameter, £5 > 0, which
is another input of the algorithm. Two features are degenerate if they are not ey-
away from each other (i.e, the distance between them is less than £y). We need to
use other two artificial resolution parameters which cannot be smaller than ¢;. They
are denoted by p; and py. The idea is that when perturbing a segment s;, p; is the
resolution parameter of p; (more precisely, we demand that a disc centered at p} with
a radius p; is empty) and ps is the resolution parameter of ¢, and s! (more precisely,
we demand that a disc centered at ¢; with a radius ps is empty and that the distance
between s and any vertex induced by S! ; is at least py). We need two different
resolution parameters for the endpoints since as we show below, the work on p) is
different from the work on ¢;. They also differ from &, since £¢ is used for a certain
degeneracy which must have smaller perturbation magnitude than p; and p, — see
Appendix A.2.4. We discuss the exact relations among the resolution parameters in
Section 8.7 and Appendix A.2.4.

In order to eliminate degeneracies we use the following perturbation process. We
order the line segments arbitrarily and possibly perturb each one in its turn. For
each line segment s;, we possibly perturb p; and ¢; several times. If p; induces degen-
eracies, it is perturbed in order to find a placement in which it does not induce any
degeneracy. The perturbation of ¢; is different since its goal is not only to eliminate
the degeneracies induced by ¢;, but also to eliminate the ones induced by the whole
si. If ¢; or s} induce degeneracies, we perturb ¢; until all degeneracies are eliminated.
Once the work on an endpoint is done, its placement is determined and it is never
perturbed again. Each endpoint is perturbed inside a disc whose center is the orig-
inal endpoint and whose radius is called a perturbation radius. Since the goals of
the perturbations of p; and ¢; are different, different perturbation radii are used for
each one. We denote the perturbation radii by ¢; and d, for p; and ¢; respectively.
The radii are determined such that the probability that a placement of an endpoint
induces a degeneracy is no more than % We choose a placement for the endpoint
at random (inside the disc) until no degeneracy is induced. Since the probability to
induce degeneracies after the perturbation is no more than %, after no more than 2
perturbations on the average we find a degenerate-free placement. The determination
of the values of 0, d2, p; and py are technical (and tedious) and hence postponed to

Appendix A.

Previous Controlled Perturbation algorithms [25, 34| applied optimization tech-
niques in order to make the work and the outcome of the algorithm more efficient. We
implemented these optimizations and describe how we apply them in our algorithm
— see Section 8.5.

A critical decision when designing a geometric algorithm is whether to use finite-
precision arithmetic or exact arithmetic. We describe the advantages and disad-
vantages of using each one and explain why we choose to implement CPLS with
finite-precision arithmetic. Other Controlled Perturbation algorithms [25, 34| used

8.2. Preliminaries and Key Ideas 40

finite-precision arithmetic as well.

Throughout the algorithm we use the following atomic operations (we assume that
each operation takes O(1) time):

e Finding an intersection between two line segments.
e Finding the distance between a segment and a point.

e Picking up a random point inside a disc.

We expect the perturbation radii and the resolution parameters to be much smaller
than the length of the input line segments. Otherwise CPLS is not acceptable for the
input since line segments may be perturbed significantly. In that case, the user should
refrain from using CPLS and resort to other fixed-precision approximation schemes.
We next give a formal definition of this issue.

Definition 8.1 CPLS is considered \-acceptable for an input set S of segments and
for a parameter X\ if and only if §/L < X where 0 is the largest perturbation radius
and L s the length of the longest input line segment in S.

Note that the biggest perturbation radius is bigger than any resolution parameter
(see Equation A.6 and Theorem A.4). Thus if the perturbation is A-acceptable,
then for each resolution parameter £, ¢/L < A holds. We get that CPLS is A-
acceptable if any resolution parameter and perturbation radius is at least % times
smaller than the longest input segment. Thus the perturbation magnitudes will be
relatively small, provided that A is small enough. We arbitrarily choose A = % in our
implementation. Our experiments have shown that with a reasonable input resolution
parameter and input that is not extremely congested, CPLS is found A-acceptable.
The above definition is crucial for both the CPLS algorithm and its analysis, as we

show below.

Discussion: CPLS vs. SR and ISR. SR (see Chapter 2), as well as ISR (see
Chapter 3), have basically the same goal as CPLS, but the results of SR and ISR
compared with CPLS are quite different. Both make the vertices of the original
arrangement well separated. In SR and ISR all vertices inside a certain pixel are
collapsed to the center of it, possibly introducing new degeneracies. The situation is
different in CPLS. Here vertices of the original arrangement are perturbed to make
their distance not less than a given threshold. In that sense, the results are somewhat
opposite to SR and ISR. An advantage of SR and ISR over CPLS is that they preserve
certain topological features while CPLS does not. On the other hand, an advantage of
CPLS over SR and ISR is that the output type is maintained (line segments) while SR
and ISR transform segments into polygonal chains. While SR has the property that an
output chain is very close to its original segment this is not the case for ISR and CPLS

8.3. The Degeneracies 41

where the distance between an original segment and its output depends on the input
segments and the parameters of the algorithm. In SR the distance between a vertex
and a non-incident edge can be extremely small inducing potential degeneracies. This
is not the case for ISR and CPLS. While ISR and SR can maintain planar subdivisions,
CPLS is constrained to work with segments. The above discussion implies that CPLS
provides another scheme to create a robust approximation of an arrangement of line
segments in IR? beyond the well known SR and our ISR. Each scheme may be suitable
in different situations.

8.3 The Degeneracies

Recall that a vertex of an arrangement of line segments is either an endpoint, e, or an
intersection point 7 of two segments. Let s be a segment. Three types of degeneracies
are possible in an arrangement of line segments:

Dy : endpoint - line segment It takes place when the distance between e and
s (where e is not an endpoint of s) is smaller than a given threshold.

Dy : intersection - line segment It takes place when the distance between 7 and
s (where s is not one of the segments that induce 4) is smaller than a given threshold.

D5 : two endpoints It takes place when s is short enough such that
its endpoints induce degeneracies.

8.4 Algorithm

As we described earlier, each line segment is processed in two phases, one for each
endpoint. Next we explain the details of each phase. For brevity we omit the special
case of s; which involves only perturbations due to degeneracies of type D3 in which
only ¢; might be perturbed such that it is sufficiently far from p| = p;.

First phase. In this phase p; is possibly perturbed. The possible degeneracies in
this case are of type D;. We first check whether no s7 € Si’ | induces a degeneracy
with p;. If so, we set p, = p;. Otherwise we have to perturb p,. The perturbation
is done as follows. We perturb p; randomly in a disc centered at p; with a radius
91, giving pi. We check if p; induces degeneracies of type D;. If not, the work on
p; is done. Otherwise, we continue choosing placements at random inside the same
disc centered at p; until we find a placement for which p} induces no degeneracies.
Recall that d;, the radius of the disc, is determined such that the probability that a
placement of an endpoint induces degeneracies is no more than % In Appendix A we
show that this holds for any §; > @, where m is the maximum number of line
segments that were inserted into A by the time that a certain s € S is inserted, which
can be very close to s or intersect it (we describe how to estimate m in Section 8.6),

8.5. Optimizations 42

R is the ratio Z—; (the size of p; is determined in this way, namely we set p; to be Rpo;

we give the details in Section 8.7), and p, is the resolution parameter for the second
phase (see Theorem A.4).

Second phase. In this phase, s is inserted into A. Since the location of p] is
already determined, only ¢; may be perturbed such that none of the following types
of degeneracies arise:

D3 between p) and ¢;.

For each s € S}’ ;:
Dy induced by either p’ or ¢; and .
D, induced by ¢; and s7.

For each sj, s € S} |,j # k (the order of j and k is not important):
if s7 intersects sj;, Dy induced by this intersection and sj’.

For each s§, s € S} |,j # k (the order of j and k is important):
if s intersects s;, Dy induced by this intersection and sj.

We check if s; induces degeneracies. If not, ¢; = ¢; and s} is inserted into A. Oth-
erwise, we perturb ¢; inside a disc centered at ¢; with a radius d, in the same manner
as done for p; above. Recall that 05 is determined such that the probability that a
placement of an endpoint induces a degeneracy is no more than % In Appendix A we

8mRp
show that this holds for any §, > ‘lﬂ(m(mﬁ)(ur 2)

s

m ooV RE 1 +2(m + 1)), where m, R and

po are defined as in the first phase and L is the length of the largest line segment in
S.

Figure 8.1 depicts two results of Controlled Perturbation of an arrangement of
four line segments. Notice that both degeneracies of types D; and D, are eliminated,
but the topology of the original arrangement may not be preserved.

The complexity of the procedure is analyzed in Sections 8.5, 8.6, 8.7 and in Ap-
pendix A, and is summarized in Theorem 8.8.

8.5 Optimizations

We describe two typical optimization techniques to improve the quality of the output
and the performance of the algorithm. These techniques were previously applied in
the context of Controlled Perturbation (25, 34]. The first one deals with a useful
technique to find a group of candidate segments for the degeneracies tests. By that
we improve the performance of CPLS since we prevent many possibly redundant tests

8.5. Optimizations 43

(a) (b) (c)

Figure 8.1: An arrangement of line segments (a) and two different results of CPLS

(b),(c)

of degeneracies. The second one deals with reducing the perturbation magnitudes.
By achieving smaller perturbations we improve the quality of the output since the
output line segments are closer to the original ones. Our CPLS implementation uses
these techniques and we base our analysis on them.

8.5.1 Tiling the Plane

Let s; € S be a segment that is currently perturbed. We need to find the segments
that induce degeneracies with s;. We could check all the segments in S; ; for that
but in practice we can do better. Let U(s;) C S; 1 be the set of segments that may
induce degeneracies with s;, after possibly perturbing the segments. Then it suffices
to work only with segments of U(s;). We next describe a way to find a superset of
U(s;), which may still be much smaller than S; ;.

Let 7 be the smallest magnitude that satisfies the following condition: if the dis-
tance between two line segments is equal or greater than 7, then there is no possibility
that a degeneracy which is a result of both is induced. In Section 8.6 we show that
7 = 2max(dy, d2) + p1. We use the following definition throughout this section.

Definition 8.2 Let 01 and oy be two geometric objects and d(o1,02) be the minimal
distance between them. We say that two objects are p-close if d(o1,09) < p.

Let V(s;) = {s € S|s; and s are 7-close}. The following clearly holds:
Observation 8.3 U(s;) C V(s;).

Recall that L is the maximum length of a segment in S. We tile the plane with
a grid of squares, H, whose edge length is L such that the point (0,0) is a vertex
of the tiling. We keep the squares that are used (as described below) in a balanced

8.5. Optimizations 44

binary tree. Let Hy, C H be the squares that are intersected by s; or are 7-close to
s;. Let S(H,,) C S;—1 be the set of segments that intersect Hy, or are T-close to H,.
Obviously each segment s € V'(s;) intersects at least one square h € Hy, or is 7-close
to it but possibly other segments that are not 7-close to s may also intersect Hy,. We

get the following.
Observation 8.4 V(s;) C S(Hy,).

From observations 8.3 and 8.4 we get that U(s;) C S(H,,). Thus the tests for de-
generacies with s; can be restricted to the segments of S(Hy,). Now the problem
is restricted to finding S(Hy,). We describe next how we do that. Then the work
for finding S(H,,) for all the segments is done as a preprocessing step when all the
parameters necessary for computing the resolution parameters are determined (more
precisely after the work described in Sections 8.6 and 8.7). During the perturbation
process, each segment s; points to S(Hs,) and we use the segments of S(Hs,), after

being possibly perturbed, when testing for degeneracies with .S;.

Notice that if CPLS is A-acceptable then 7 < 3AL. Then, if CPLS is A-acceptable,
for each A we can bound the number of squares which s; intersects or that are 7-close
to s; by a constant (recall that the edge length of the square is L). Recall that we
choose A = 1—10. With that value the bound of the number of such grid squares is 7.
It follows that if we denote by w the maximum possible number of segments in each
square, then |S(Hy,)| = O(w). The algorithm proceed as follows. We first find the
square hy € H that contains p,. We insert hy into H,,. Then we check each one of
the 8 neighboring squares of h; to see if s; intersects it or if s; is 7-close to it. Let
H, C H be the group of squares that satisfy this condition. Each h € H; is inserted
into H,. Then we apply the same procedure we applied to h; to each h € H; and
possibly find another set Hy C H of squares. Then each h € H> is inserted to H,.
We do not need to search for neighbors of the squares in H, since by that time Hj,
is complete. The reason is that other squares are too far to intersect or be 7-close to

s;. Obviously we take care not to insert a square twice.

For each h € H let S(h) be the list of segments intersecting h or that are 7-close
to h (S(h) is built incrementally in the process we describe below). For each h € H
being inserted to Hy,, we insert each s € S(h) to S(Hy,) and insert s; to S(h). We
need to avoid inserting the same segment twice, thus the data structure that holds
S(Hy,) is implemented as a balanced binary tree. By the time we finish the above
algorithm, we are guaranteed that S(Hj,) is complete.

The work we described above is for finding the segments that can induce degen-
eracies with s;, thus appropriate when inserting ¢;. When inserting p; the work is a
little different since we need to find the segments that may induce degeneracies with
pi- The only difference is that instead of finding Hj,, we have to find H,, C H which
are the squares that are (-close to p; where (= max(dy,02) + 07 + p; (the difference
from 7 is that we regard the perturbation of a vertex p; and not of an entire segment).
The following claim is similar to the one we described above for s;: If CPLS is A-

8.5. Optimizations 45

acceptable, then |S(H,,)| = O(w). Thus the asymptotic complexity of the procedure
does not change.

Another important point is to estimate the number of degeneracies that are tested
when processing a certain line segment. This estimation effects the complexity of the
work. For example, when testing degeneracies with intersections of line segments,
we expect that the number of degeneracies to be tested would be quadratic in the
number of line segments that might induce degeneracies. We denote this quantity by
U(w). We postpone the various estimations of ¥(w) to Appendix A.

The following theorem summarizes the discussion above.

Theorem 8.5 Finding the set of segments that are tested with the currently inserted
segment for degeneracies takes O(n(logn + wlogw)) preprocessing time and O(wn)
working storage for all the inserted segments together, where w is the mazximum pos-
sible number of segments in each square.

Proof: Recall that n is the number of segments in the input. For a segment s;,
finding and inserting squares to the squares data structure takes O(logn) time. Since
S(h) and S(Hs,) are implemented as a list and a balanced binary tree respectively,
the work on them takes O(wlogw) time. Together the total time for n segments
is O(n(logn + wlogw)). There are at most O(n) squares, each holds at most O(w)
segments. For each segment inserted we build the tree S(Hj,) with O(w) nodes. Thus
the working storage is O(nw).

OJ

8.5.2 Reducing the Perturbation Magnitude

If a vertex must be perturbed then we would like to move it as little as possible. Since
our algorithm does not find the smallest perturbation that removes the degeneracies,
which is a very complicated and time consuming task, we take another strategy. The
discussion below is relevant both to the first and the second phases. As mentioned
in Section 8.4, we check if there is a need to perform perturbations to eliminate
degeneracies. If there is, we perturb the vertex randomly inside a disc whose center
is the original placement of the vertex in order to find a degeneracy-free placement.
The size of the disc (namely its radius §) is sufficiently large so that no more than
two perturbation trials on the average are needed. Since § is an upper bound which
fits extreme cases of congested areas such that the various forbidden placements do
not overlap, there is a great chance that a smaller radius is sufficient. Thus the
optimization is carried out as follows. We begin with a smaller radius, r (we choose r
to be 10 times bigger than the largest resolution parameter, p; — see Lemma A.2 and
the details following it), making a few random trials in order to find a degeneracy-free
placement (let ¢ be a parameter we fix for the number of such trials). If we find one,
we are done. Otherwise we double r, making at most ¢ additional random trials inside

8.6. Computing T and m 46

the larger disc. We continue this way until we find a degeneracy-free placement. If
we reach a point in which » > §, we set r to be d, and continue with the same r
until we find a degeneracy-free placement. With ¢ as the radius, we need at most two
trials on the average to get a degeneracy-free placement. The reason for stopping at
this radius is that we do not want the perturbation to be larger than ¢ in order to
constrain the perturbation magnitude and to satisfy the perturbation analysis. We
next give an upper bound on the expected running time of this procedure.

Theorem 8.6 Finding a degeneracy-free placement for any vertex takes O(c¥(w) log l%)
expected time.

Proof: Let k be the largest integer that satisfies 10x2%p; < §. Then the series of
the radius sizes is {10py,20py, ..., 10%2%p;, 6}, where for each one ¢ trials are carried
out except for the last one, in which a small constant number of trials are carried
out. Thus the number of trials is O(clog pil). Since each trial involves O(¥(w)) tests
(recall that ¥(w) is a function that determines the number of potential degeneracies
that might be involved as a function of w), the total expected time is O(c¥(w) log /%)'
O

8.6 Computing 7 and m

This section describes a preprocessing step of the perturbation algorithm. We defined
7 as the smallest magnitude such that if the distance between two line segments is
equal or larger than 7 then there is no possibility that a degeneracy which is a result
of both is induced. We start by evaluating 7.

Two segments cannot induce a degeneracy if after they are perturbed, their dis-
tance is equal to or greater than some resolution parameter. The largest resolution
parameter we encounter is p; (see Appendix A). We conclude that:

T = Qmax(él, 52) + P1-

We are now ready to give a formal definition of the parameter m which was
mentioned above. We define m to be the maximum number of line segments inserted
by the time a certain segment s € S is inserted, which may induce degeneracies with
s, namely the segments that are 7-close to s. Thus m strongly depends on 7 which
in turn depends on 47,0, and p;. On the other hand, according to Appendix A, 4y,
05 and p; depend on m. Therefore we need to find a way to determine the values of
these parameters.

Let A = {4, d2}. Since the smaller the value of m is, the smaller the perturbation
magnitudes are, we want to find the smallest m such that together with the values of

8.7. Approximating the Best Ratio (R) 47

A there are indeed no more than m segments which are 7-close to a certain one. We
propose three approaches:

I We begin with m = 1, compute the values of the parameters in A and check if
there are at most m = 1 segments 7-close to any segment s € S with the
appropriate values of A. If this is the case, we set m to 1 and the values of the
parameters in A accordingly. Otherwise, we increment m by one and do the
above again. We continue with this scheme until there are at most m segments
T-close to a certain segment s € S with the appropriate values of A. Obviously
we are guaranteed to stop when we reach m = n. We use the tiling technique
as described in Section 8.5.1 to find the potentially close segments.

Complezity. We have at the worst case n tests for a valid m. From Theorem 8.5
each one takes O(n(logn + wlogw)) time. Thus the total time complexity is
O(n*(logn + wlogw)). The working storage is O(nw) as in Theorem 8.5.

The problem is that this approach increases the asymptotic time complexity of
the algorithm significantly.

II We simply let m = n and calculate the values of the parameters in A.

Complexity. There is a constant number of computations. Thus the total time

is O(1).

In this way, the parameters of A get upper bound values which are obviously
valid for applying CPLS. Nevertheless, this approach is problematic since al-
though we save time, we may get very big perturbation radii which degrade the
quality of the output.

I We compute the parameters of A when m = n. The values we get are valid upper
bounds since m is upper-bounded by n. With these values we find what is the
number of segments which are 7-close to a certain segment s € S and set it to
m. Obviously, this value is an upper bound of the real m because the real m is
supposed to be found with parameters which are less than or equal to the ones
we get here. Now we recalculate the values of the parameters in A according to
the newly found m. We use the tiling technique here too.

Complezity. The same as the tiling technique since it is applied once: O(n(logn+
wlogw)) time and O(nw) working storage.

This approach has a much better time complexity than the first one. Although
we can get larger perturbation radii, our experiments have shown that they are
still relatively small. In that sense, it is better than the second approach. Thus
we use this approach throughout the article and in our implementation. All the
complexity calculations are effected by this approach.

8.7. Approximating the Best Ratio (R) 48

02(R)

01(R)

Figure 8.2: §; and 0 as functions of R. The thick line is G5(R)

8.7 Approximating the Best Ratio (R)

This section describes yet another preprocessing step. Thus it is strongly related to
the procedure that is described in Section 8.6. Recall that R determines the ratio
of the two resolution parameters p; and ps. A nice and simple approach would be
to set R to be the one that makes the maximum of the perturbations radii minimal.
For simplicity we choose R to be an integer. It has to be bigger than 1 so the square
root in the inequality defining s is real (see Theorem A.4). Notice from the values
of 61,0, and py in Theorem A.4 that if all the parameters but R are constant, d; (R)
is an increasing monotone function and §»(R) is a decreasing monotone one.

Let G5(R) = max(61(R),09(R)). We get that Gs5(R) has one local minimum,
[(see Figure 8.2). We are interested in finding [since it is exactly the value for
which the maximum between the perturbations radii is minimal. More precisely, for
convenience we search only for integers bigger than 1. Let I’ denote the local minimum
for integers. We find I’ by applying a variation of binary search with R, while R ranges
from 1 to some very big value (denoted by M). M can be the maximum integer, the
maximum double, or other constants depending on the architecture (we chose it to be
the maximum double). For each R being checked, we make an iteration of approach
Il in order to find the values of the various parameters. When the binary search is
over, R is set to [". The exception is the following case. Although M has a very big
value, there is a possibility that I > M. In that case R is set to M. Except for
this extreme case, the deviation from the optimal R is small. The following theorem
summarizes the preprocessing work of CPLS:

Theorem 8.7 The preprocessing work of CPLS takes O(nlog M(logn + wlogw))
time and O(nw) working storage.

8.8. Discussion: Exact Arithmetic vs. Finite-Precision Arithmetic 49

Proof: Since we make a binary search over M, each time applying the approach
I, the time bound follows. The working storage is not effected by the search. O

8.8 Discussion: Exact Arithmetic vs. Finite-Precision
Arithmetic

An important discussion concerning the implementation of geometric algorithms is
whether to use finite-precision or exact arithmetic. By using exact arithmetic, we
are guaranteed to get accurate results. Unfortunately, by using the available exact
arithmetic number types which support square root operation (as CPLS requires),
we get a huge time and space overhead. On the other hand, under certain assump-
tions, CPLS can use finite-precision arithmetic and still produce valid results. The
assumption is that the resolution parameter ¢; is chosen sufficiently big such that
degeneracies are not induced due to the errors with the machine precision. (We are
currently investigating this issue to determine the relation between ¢y and the machine
precision.) We implemented our software with floating-point arithmetic. Earlier Con-
trolled Perturbation |25, 34] also rely on this assumption when using floating-point
arithmetic.

The idea behind our scheme is that since the output has a finite-precision repre-
sentation and has no degeneracies, following manipulations that use finite-precision
arithmetic can safely use it. The same assumption mentioned above regarding the
resolution parameter holds here too, namely that the resolution parameter is cho-
sen sufficiently big so that degeneracies are not induced due to the errors with the
machine precision.

We next point out another problem which may arise when using finite-precision
arithmetic. This problem is relevant to the earlier Controlled Perturbation algorithms
as well.

Points inside forbidden loci. Recall that the radius of the perturbation disc is
chosen such that the area of the disc is at least twice bigger than the sum of the areas
of all possible forbidden loci (namely, those that induce degeneracies). Thus when
picking up a point inside the disc, we have a probability of at least % to be outside
the forbidden loci. If we use finite-precision arithmetic, it is not obvious that this
is the case. Consider the example in Figure 8.3. The point p has to be perturbed
inside the disc C' where the resolution parameter is . Since we use finite-precision
arithmetic, we have a grid of points, K, to pick up randomly inside C (the black
points in Figure 8.3). The forbidden loci are induced by the five strings crossing C'
(denoted by 7). These are the shaded rectangles in Figure 8.3. Note that the width of
each z € Zis 2¢. Let Y = Z N . Therefore, Y is the forbidden loci. The strings are
placed such that they cover all the points of K. Thus we never get a degenerate-free

8.9. The Main Theorem 50

Figure 8.3: A case where all the grid points are inside the forbidden loci

placement. Even if not all the points are inside forbidden loci, the probability to get
a degenerate-free placement can be significantly less that %, resulting in a hard work
to find one.

From the example in Figure 8.3 we can conclude that if there are m segments
inducing these strings and the perturbation radius is d, then § ~ 2me. However, the
real magnitudes of d; and d, are usually much bigger than 2me and therefore this
example is not realistic. Here the practical assumption is that ¢ is sufficiently larger
than the machine precision and hence situations as the one depicted in Figure 8.3 will
be ruled out. Our experiments confirm that this problem does not arise.

8.9 The Main Theorem

We conclude this chapter by giving the main theorem of CPLS.

Theorem 8.8 Given n input line segments and a resolution parameter £y, a valid
perturbation of the line segments can be computed in O(nlog M(logn + wlogw) +
nwec(log % +wlog %)) expected time and O(nw) working storage, and the output size
15 n, where the parameters are described below. M is a big constant that can be
expressed in the number type that is used. w is the mazimum number of line segments
in a grid square as described in Section 8.5.1. ¢ is the number of trials done in order
to find a degenerate-free locus before enlarging the radius of the perturbation disc.

p1 = Rpo is the biggest resolution parameter related to the first perturbation phase

(14+2X\)eg L
A2

-7
ratio 2—;, L is the length of the longest input line segment in the input and X\ is the
acceptance parameter of CPLS. 61 and 6y are the perturbation radii for the first and

second vertices of a line segment respectively. The values of ; and do are chosen such

where py = 15 related to the second perturbation phase, R is simply the

8.9. The Main Theorem 51

m(m 8mBoy . .
that 6 > 22E22 g 5, > 222 (ﬁjﬁj_l" Dy 2(m+ 1)) where m is the mazimum

number of line segments that were inserted into the output by the time that a certain
s € S is inserted, which can be very close to s or intersect it (See Appendiz A for
more details on these magnitudes.)

Proof: The complexities above are the results of summing up the complexities
in Theorems 8.6, 8.7, A.1 and A.3. The output has O(n) size since each input line
segment contributes one, possibly perturbed, line segment to the output. O

Chapter 9

Implementation Details

The implementation details we described that are not specific to ISR (see Chapter 5)
are relevant here too. We next describe more implementation details of the CPLS
package.

The main input and the main output of the package are sets of line segments. The
Controlled Perturbation is a framework for several types of algorithms (see Chapter 7).
Thus we have designed our package more generally for Controlled Perturbations in
IR?. The main class is a general frame to perform Controlled Perturbation algorithms.
It is separated from the type of objects that use it. Its knowledge is the Controlled
Perturbation framework (see Chapter 7) and the optimizations (see Section 8.5). In
order to use it, it has to be templated with the information of the object, its perturba-
tion details, and as other classes of CGAL [6], the arithmetic number type. The object
and its perturbation are separated in order to allow different perturbation schemes
for the same type of objects. The advantage of our design is that once the Controlled
Perturbation frame class is implemented, it is suitable for other kinds of objects and
perturbations. Using this frame, we built the CPLS package by templating both line
segments and our perturbation algorithm. Future Controlled Perturbation algorithms
in IR? will be able to apply the same frame class, making the work easier to imple-
ment and support. This was exactly the case when we developed and implemented
Controlled Perturbation algorithms for both arrangements of polygonal lines and ar-
rangements of polygons (which are extensions not described in this thesis). We used
floating-point arithmetic for implementing CPLS.

02

Chapter 10

Experimental Results

We present two kinds of experimental results obtained with the CPLS package. For
each one we give quantitative magnitudes that indicate the quality of CPLS.

We choose ¢y such that the other resolution parameters (p; and p,) will be suf-
ficiently large compared with the resolution of the standard double (floating-point)
number type. Notice that the only computation involving £y is when we determine
po. We calculated p, using LEDA’s bigfloat number type' [30]. We observed and con-
firmed that the computed value p, was the same when using either bigfloat or double.
The rest of the computation was carried out with the standard machine double.

The abbreviations we use in this section are explained in Table 10.1.

10.1 Congestion Data

The input for this example is similar to the one we used in Section 6. The difference is
that this one has only 100 segments with 2150 intersections. The segments’ bounding
box lower left corner is (0,0) and upper right corner is (100, 100). For clarity, the
pictures in Figure 10.1 depict a similar example with resolution le-15 so that the
perturbations are sufficiently large to be visible. In order to show the differences
between the input and the output more clearly, the bottom left part of the example
is zoomed in.

01 and d,, the number of perturbed vertices and the actual size of the perturbations
are bigger as we use a bigger 5. The actual average and maximum perturbations
are much smaller than 0; and d,. It shows that the optimization that we describe in
Section 8.5.2 reduces the perturbation magnitudes significantly. The average number
of trials to find a valid perturbation for a vertex does not exceed 3.476.

LEDA’s bigfloat mimics floating-point representation with user-fixed mantissa length (we set it
to 100) and arbitrary length exponent.

93

10.2. Random Data 54

Abbreviation ‘ Explanation ‘

n number of input line segments

nvp average number of perturbed vertices

ap average perturbation

mp maximum perturbation

ant average number of trials to find a valid perturbation
for a vertex

Table 10.1: Abbreviations

10.2 Random Data

The input for this example is a set of line segments whose coordinates are chosen
randomly inside a bounding rectangle whose lower left corner is (0,0) and upper right
corner is (1,1). We divided the experiments into four different numbers of segments:
100, 200, 300 and 400. For each one we created a random set and tested each one
several times, each time with a different resolution parameter. For clarity the pictures
in Figure 10.2 depict a similar example with only 50 segments in a bigger resolution
parameter (2e-9) so that the perturbations are sufficiently large to be visible. In order
to provide a nice example with visible degeneracies elimination, the coordinates of
three segments of the input were determined by us instead of being randomly chosen.
The input-zoom-in picture shows a part of the set in which these three line segments
induce degeneracies with other line segments. The degeneracies and their elimination,
as shown in the output-zoom-in picture, are clearly visible.

We tested different number of line segments to see the effect of the density on the
results. When we increase the number of line segments, ps does not change while
p1, 01, 0o, the number of perturbed vertices and the actual average and maximum
perturbations become bigger. As in the previous example, the actual average and
maximum perturbations are much smaller than §; and d5. The effect of changing the
resolution parameter is also similar to the previous example. The average number of
trials to find a valid perturbation for a vertex does not exceed 2.01.

10.2. Random Data

e v A Y A
LTI 27775554

IIIII///

7
77

i
iy

W
W

QQQQRQRR

KKK
AR
IR
KBRS
558

%
0'0':0:0'0
200685

9%
R
QIR

GRS o
R SKS
S

i 7 ==
,,'

XS
S
K o
RS

SRS
et
S5 X

S SAALLTTT 7
77 LI7 777
L7

(LT 7777
e

-
7777

-/
77

7~

10/ 817e%r7 2%
7
I e s
=
Ly
g

NS GO
S
DURXAEL
RS
RIS

N

e

BRI
e

oS

XS
>

%

x

o
o
0!

Y a
25%%
55

N
)

*
R

S5
S
S
S
=

N
N

Input zoom in

Output zoom in

€0 1 P2 01 02 nvp ap mp ant
le-18 || 9.384e-3 | 1.201e-8 | 2.365 | 2.365 | 149 0.092 0.348 | 3.476
1e-20 | 2.95e-3 | 1.201e-9 | 0.743 | 0.743 | 149 0.028 0.115 3.268
1e-22 || 9.315e-4 | 1.201e-10 | 0.234 | 0.234 | 149 | 9.114e-3 | 0.0346 | 3.241
le-24 || 2.943e-4 | 1.201e-11 | 0.074 | 0.074 | 149 | 2.866e-3 | 0.011 3.093
1e-26 || 9.308e-5 | 1.201e-12 | 0.023 | 0.023 | 149 | 9.019e-4 | 2.904e-3 | 3.073

Statistics (n = 100)

Figure 10.1: Congestion data

%)

10.2. Random Data

Input zoom in

Output zoom in

Figure 10.2: Random data

n €0 Pl P2 o1 02 nvp ap mp ant
100 || 1le-17 | 5.483e-4 | 3.798e-9 | 0.138 | 0.138 1 3.338e-3 | 3.338e-3 1
100 || 1le-18 | 3.021e-4 | 1.201e-9 | 0.076 | 0.076 1 1.986e-3 | 1.986e-3 1
100 || 1e-19 | 1.679e-4 | 3.798e-10 | 0.042 | 0.042 1 1.367e-3 | 1.367e-3 1
100 || 1e-20 | 9.384e-5 | 1.201e-10 | 0.023 | 0.023 1 7.109¢-4 | 7.109¢-4 1
200 || 1e-17 | 8.401le-4 | 3.798e-9 | 0.425 | 0.425 | 21 | 6.009e-3 | 8.349e-3 | 1.428
200 || 1e-18 | 4.46e-4 1.201e-9 | 0.226 | 0.226 12 | 3.493e-3 | 4.459¢-3 | 1.416
200 || 1e-19 | 2.428e-4 | 3.798e-10 | 0.123 | 0.123 7 1.657e-3 | 2.403e-3 1
200 || 1e-20 | 1.34e-4 | 1.201e-10 | 0.067 | 0.067 5 7.78¢-4 | 1.229e-3 1.2
300 || 1e-17 | 1.145e-3 | 3.798e-9 | 0.871 | 0.871 | 50 | 7.679e-3 0.021 1.74
300 || 1e-18 | 5.801e-4 | 1.201e-9 | 0.441 | 0.441 | 29 | 3.736e-3 | 5.633e-3 | 1.31
300 || 1e-19 | 3.074e-4 | 3.798¢-10 | 0.234 | 0.234 | 16 | 1.944e-3 | 2.97e-3 | 1.062
300 || 1e-20 | 1.672e-4 | 1.201e-10 | 0.127 | 0.127 9 1.202e-3 | 1.518e-3 | 1.222
400 || 1e-17 | 1.496e-3 | 3.798e-9 1.52 1.52 114 0.01 0.298 2.01
400 || 1e-18 | 7.196e-4 | 1.201e-9 | 0.731 | 0.731 | 60 | 4.652e-3 | 7.923e-3 | 1.683
400 || 1e-19 | 3.696e-4 | 3.798e-10 | 0.375 | 0.375 | 39 | 2.565e-3 | 6.739%¢-3 | 1.384
400 || 1e-20 | 1.974e-4 | 1.201e-10 0.2 0.2 19 | 1.455e-3 | 1.973e-3 | 1.421

Statistics

56

Chapter 11

Implementation Details

We implemented both ISR and CPLS with C+-+, using many capabilities of CGAL
[6]. Each package defines a C++ class to work on [38]. The programmer uses our
packages by creating instances of these classes. The implementation is generic in
the sense that each class is templated with a number type with which the data are
composed of. The user of our software chooses which number type to apply with the
template mechanism of the C++ language.

The main input of the applications is a set of line segments while the outputs are
a set of polygonal chains of segments for ISR and a set of the perturbed segments for
CPLS.

The user can choose the output format. It can be either a text file describing the
arrangements in the output or a graphic window in which both the input and the
output are drawn (the graphic window is the LEDA window [29]).

Except for CGAL capabilities that we explicitly mention, we applied other CGAL
elements such as geometric predicates, points, segment, vector and intersection oper-
ations.

We next discuss implementation details of each package.

ISR. The ISR package supports both ISR and SR. It is up to the user to decide
which one to apply. Generally speaking, the way to convert the ISR algorithm to
SR is simply to constrain the recursion depth of the Reroute routine to one (see
Chapter 3), meaning that the output polygonal chains are determined immediately
by the hot pixels that the original segments intersect.

Since, as presented, ISR and SR must be implemented with an exact number type,
we implemented the package with the Leda rational number type [29].

Recall that we use the c-oriented kd-trees as our search structure (see Chapter 5)
for ISR. As a first step for creating the c-oriented kd-trees, we have to find the hot
pixels. This is done by applying a plane sweep algorithm [6]. Recall that the c-

o7

58

oriented kd-trees are composed of several kd-trees. We use the kd-tree package of
CGAL to implement that. The user has the ability to choose the number of trees to
use.

The ISR package has become a part of CGAL.

CPLS. The Controlled Perturbation is a framework for several kinds of algorithms
(see Chapter 7). Thus we have designed our package more generally for Controlled
Perturbations in IR?. The main class is a general frame to perform Controlled Pertur-
bation algorithms. It is separated from the kind of objects that use it. Its knowledge
is the the Controlled Perturbation frame and the optimizations for reducing pertur-
bation size and the tiling of the plane (see Chapter 8). In order to use it, it has
to be templated with the information of the object, its perturbation details, and as
other classes of CGAL, the arithmetic number type. The object and its perturbation
are separated in order to allow different perturbation schemes for the same kind of
objects. The advantage of our design is that once the Controlled Perturbation frame
class is implemented, it is suitable for other kinds of objects and perturbations. Using
this frame, we built the CPLS package by templating both line segments and our per-
turbation algorithm. Future Controlled Perturbation algorithms in IR* will be able to
apply the same frame class, making the work easier to implement and support. This
was exactly the case when we developed and implemented Controlled Perturbation
algorithms for both arrangements of polygonal lines and arrangements of polygons
(which are beyond the scope of this thesis).

We used floating-point arithmetic for implementing CPLS.

Chapter 12

Conclusion

We presented two types of finite-precision approximation techniques for arrangements
of segments in the plane. The goal of these techniques is to create robust data for
further manipulation of the input. Each technique may be suitable in different situa-
tions. We implemented both techniques and presented experimental results obtained
with our implementation.

12.1 TIterated Snap Rounding

We presented an augmented Snap Rounding procedure which rounds an arbitrary
precision arrangement of segments in IR? with the advantage that each vertex in the
rounded arrangement is at least half a unit away from any non-incident edge. The
new scheme makes the rounded arrangement more robust for further manipulation
with limited precision arithmetic than the output that the standard Snap Rounding
algorithm produces. We have proved that the maximum distance between an orig-
inal segment and its output chain is ©(n?) in the worst case. On the other hand,
many examples have demonstrated a very small deviation, no more than a small con-
stant number of pixels. We believe that real-world data behave in this way and not
like pathological examples such as the one we used to prove the lower bound. We
implemented ISR using exact arithmetic.

We propose several directions for further research: (1) Can detecting all the hot
pixels through which an output chain passes be done more efficiently? (2) Extend
the scheme to non-linear curves. (3) The rounded arrangement can have at most
O(n?) segments, whereas our algorithm (as well as the known algorithms for SR)
may produce (n?) output links. The task here is to devise an output sensitive
algorithm where the output size is the size of the rounded arrangement and not the
overall complexity of the chains. (4) Improve the heuristics for choosing the directions
of the kd-trees. (5) Find a scheme that controls both the distance of a vertex and a
non-incident edge and the maximum perturbation magnitude.

29

12.2. Controlled Perturbation of Line Segments 60

12.2 Controlled Perturbation of Line Segments

We presented an algorithm that eliminates degeneracies from an arrangement of line
segments by perturbing the endpoints of the input segments slightly. Thus making
the rounded arrangement more robust for further manipulation. We implemented the
algorithm using floating-point arithmetic. Our experimental results have generated
relatively very small perturbations.

We have recently also developed algorithms for Controlled Perturbations of both
arrangements of polygonal lines and arrangements of polygons. We implemented
both of them and achieved good results. We intend to report on these Controlled
Perturbations algorithms in a separate report.

We propose several directions for further research: (1) In our work we assumed
that we are given a sufficiently large £ so that computing with floating-point arith-
metic can be carried out safely. To fill up the gap here one needs to determine,
given the specific arithmetic precision, what is the smallest ¢ > 0 with which all
the computations in CPLS can be done safely. (2) Recall that the perturbations of
the first and second endpoints are different. The result is that it is possible that
the output of CPLS changes if we change the order of the endpoints of some of the
line segments. Another effect on the result of CPLS can be induced by changing the
order of insertion of the line segments in the input since the perturbation of a certain
line segment depends on the segments that precede it. The task here is to devise a
way for determining good orders both of the line segments in the input and of the
endpoints along the line segments. Good orders would be ones with which there is
a considerable probability that the actual perturbation magnitudes would be smaller
than the ones achieved with random orders. (3) Apply the Controlled Perturbation
scheme to other kinds of objects.

Appendix A

Computing 07 and 09

In this appendix we derive upper bounds on §; and ds, the perturbation radii of the
first and second endpoints of a line segment respectively.

We remind the reader of the notation introduced in Chapter 8. The same notation
is used throughout the appendix. S = {s;,ss,...,8,} are the input line segments
ordered arbitrarily. We denote by s; € S the segment that is currently perturbed.
We denote its endpoints by p; and ¢; (we relate to p; as the first endpoint, and
to ¢; as the second one; the order is arbitrary). Let p} be the result of the first
phase on p;, either perturbed or not. Let s, be the segment pig;. Let ¢/ be the
result of the second phase on ¢;, either perturbed or not. Let s! be the segment
piq,. Let S = {sV,s4, ...,5"} be the set of the first i perturbed segments. Let
P ={p\,....05,d,...,¢}. Let A= {s"|s € S}. As we mentioned in Section 8.2,
A is the output of CPLS. We denote by m the maximum number of line segments
inserted by the time any segment s is inserted, that can induce degeneracies with s.
w is the maximum number of line segments that intersect or are 7-close to a grid
square as described in Section 8.5.1.

A.1 First Phase: Computing 0,

Recall that d; is the perturbation radius of the first endpoint and p; is the resolution
parameter in this case. Each s” € S, defines a forbidden placement for p,. This
placement is the Minkowski sum of s” and a disc centered at the origin with a radius
p1- It is easy to show that the maximum area which it can cut from the perturbation
disc is when s” passes through p; and intersects the perturbation disc twice. This
area is bounded by a rectangle whose area is 2p; X 24y (rectangle abed in Figure A.1).
There is an upper bound of m segments defining such loci — see Section 8.6. The
area of the perturbation disc has to be at least twice bigger than the sum of the areas
of all the forbidden loci. Since the perturbation disc area is 767 we get:

7r6% > 8mp1dy

61

A.2. Second Phase: Computing 0 62

p1

Di

Figure A.1: Forbidden loci induced by s” € S,

8mp

o > (A.1)

™

Recall that w is the maximum possible number of segments in each square of the
tiling (see Section 8.5.1) and c is a parameter we fix for the number of perturbation
trials we make before enlarging the perturbation radius (see Section 8.5.2). The next
theorem summarizes the time complexity of the first phase.

Theorem A.1 The first phase for all the segments together takes O(nweclog %) ex-
pected time.

Proof: Picking up a random point inside the disc takes O(1) time. Each test in-
volves a computation of a random point in a disc and the distance between a segment
and an endpoint (O(1) time). There is an upper bound of O(w) segments to test (see
Section 8.5.1). According to Theorem 8.6, in the worst case we have O(clog 2—1) trials,
each one consists of at most 4w tests. We get that ¥ = O(w). Thus the first phase
for all the segments together takes O(nweclog %) expected time. 0l

A.2 Second Phase: Computing o

As noted in Section 8.4, there are several different cases of degeneracies in the second
phase. Fach one of them induces forbidden loci. In Sections A.2.1-A.2.4 we describe
these cases. Each test of each of these cases takes O(1) time. In Section A.2.5 we
compute the value of d, and the complexity of the second phase.

A.2. Second Phase: Computing 0 63

d

Figure A.2: Forbidden loci of an endpoint/intersection

A.2.1 Computing Forbidden Loci Induced by P/ ; and s;

Recall that p, denotes the resolution parameter used in this case. Here, s/ must not
penetrate the disc of radius p, centered at the points of P/ ;. This is demonstrated
in Figure A.2, where s} is the thick line whose first endpoint, p}, has already been
perturbed, and f is an already inserted endpoint which must be at least p, away
from s in order not to induce degeneracies (we explain later why we place f at the
intersection between s; and the disc of radius p; around p}). In order to prevent s/
from penetrating the disc with radius pe around f, ¢, must not be located inside the
wedge dple. Tt defines a trapezoid which bounds the forbidden loci (trapezoid abed
in Figure A.2). This trapezoid is maximal when f is located on s} and on the disc
with the radius p; around p} (this disc does not contain anything but s} since p; has
already been successfully perturbed) and when s.’s length is maximal (L + §;, where
L is the length of the longest input segment and ¢, is the maximum perturbation that
p; could have been perturbed in the first phase). This explains our choice where to

place f.

Note that ¢ in Figure A.2 is the place where the segment]ﬁ is tangent to the disc
centered at f. We denote by D the maximum area of a trapezoid abed (the forbidden
loci). Next we compute its magnitude.

Apigf =~ Apihb =~ Apllc
o @2 (@)
pig| L+61—0 L+0d+0

A.2. Second Phase: Computing 0 64

2p2(L + 61 - 62)

ab| = —
|pi9|
_ 20o(L +6; + 6
d) = 2plltato)
39|

D = ([ab| + [dc|)s,

p - Amh(L+d) (A.2)

We need to coordinate between p; and p, in order to compute d; and 05 in terms
of the input parameters. Let R be the ratio % (we have described in Section 8.7 how
to determine R). Then

p1 = Rp> (A.3)

If py is not much smaller than p; then in Figure A.2 Zdpic is not very small.
Thus the size of the trapezoid abced, which is the forbidden loci in that case, may be
unacceptably big. So we expect p, to be much smaller than p;. We also cannot make
it arbitrarily small because the bigger the R is, the bigger p; would be, resulting in
a big perturbation for the first endpoint — see Inequality A.1. In Section 8.7 we
propose a way to find an R for which the biggest perturbation radius is small.

We get that p; must be greater than p,. Thus the square root in equation A.2 is
real. Since there are 2m possible endpoints for this case of degeneracy, the total area
of the forbidden loci in this case is bounded by:

. 8mp262 (L + 61)

Il (A.4)

A.2.2 Computing Forbidden Loci Induced by Intersections of
Segments of S ; and s;

The resolution parameter in this case is py too. The effect of an intersection is the
same as the effect of an endpoint as described in Section A.2.1. The only difference
is that there are at most (7)) = m(";_l) such intersections. Thus the total size of the
forbidden loci in this case is upper bounded as follows:

P1— P2

A.2. Second Phase: Computing 0 65

P2

q;

Figure A.3: Forbidden loci induced by ¢; and " € SI" |

A.2.3 Computing Forbidden Loci Induced by S/ ;U{p;} and ¢;

First we discuss the forbidden loci induced by segments of S;' ;. This case is similar
to the first phase described in Section A.1, but this time we want the resolution
parameter to be po, and the perturbation radius to be 5. As shown in Figure A.3,
the size of the bounding rectangle is 2py X 20, = 4pyd,. The size of the forbidden
loci for p} is mp3 which is definitely smaller than 4p,d,. Since we are interested in
computing an upper bound on the area of the forbidden loci, we can bound it by
4po09 and regard it as it was an above bounding rectangle in our analysis. Since there
are at most m + 1 objects that may induce degeneracies with ¢; (m segments from
S!" | and pl), the total size in this case is

A.2.4 A Lower Bound on the Distance Between an Intersec-
tion of s; with an Already Inserted Segment and an
Already Inserted Segment

Let s7 and sj be two already inserted segments where s7 intersects s; at a point
f. We next argue that if all the degeneracies above are not induced after possibly
perturbing s; giving s7, then a degeneracy of type Dy involving f and s} cannot arise
as well. We do so, without loss of generality, by giving a lower bound on the distance
between such intersection f and s}; we denote this lower bound by p;. Assume that
this type of degeneracy involves s! (perturbed to take care of the cases in phase 1

and in Sections A.2.1, A.2.2 and A.2.3), s7 and sj. By that we show that this kind

A.2. Second Phase: Computing 0 66

Figure A.4: Minimal distance when two segments of S/, intersect

of degeneracy is eliminated automatically after eliminating all the other degeneracies
that take place in CPLS. Thus we can ignore this degeneracy when perturbing line
segments although it effects the magnitudes of the resolution parameters and the
perturbation radii.

We differentiate between two cases:

The first one is when s and s; do not intersect each other. Since each one of their
endpoints is at least p; far away from the other segment, this also holds for f € s}
and sj. Therefore the lower bound in this case is p3 = p;. Thus no degeneracy may
be induced in this case.

The second case is when s7 and s intersect. This case is demonstrated in Fig-
ure A.4. The two already inserted segments, s and s} force s not to penetrate the
disc C, centered at their intersection, ¢, with a radius p;. Thus f, the intersection
between s and s7, would be closest to s if it is placed on C'. Moreover, the smaller
the angle Zbca (denoted by «) is, the smaller p; is (in Figure A.4 it the size of fh -
the distance from f to s7). a is minimal when s} and s} have a maximal length below
their intersection (bounded by L+ d; +d2) and when the distance between their lower
endpoints (a and b are the endpoints in the figure) is minimal, bounded by ps in this
case (the resolution parameter for the second endpoint). Under these conditions, we
next compute a lower bound on the length of the segment ef.

We get:

|§| _ P2
P2 L + 61 + 62

A.2. Second Phase: Computing 0 67

— 03
efl = L+0,+0,

We assume that the perturbation is A-acceptable according to Definition 8.1, oth-
erwise CPLS would not be applied. Let o denote any resolution parameter or per-
turbation radius. Then o < AL. Together with a simple trigonometric observation in
Figure A.4, we get that

(7r a) p2/2
cos(— — =) = ———
2 2 L4 6, + 09
2
2T Oy _ P2
coSs (2 2) 4(L—|—51—|—52)2
2
2T @ P
2oy = 1- >
sin'(5 = 3) AL+6 +8)2
2 2
Y S
AL+ 01+ 09)% — 4
T o« A2
n(Z -2 > J1-4&
5m(2 2) > 1
T«
Sm(g - 5) = p3/lef]
- 2
p3 > lef] 1_Z
p/1—%
p3 >
L+ 6; + 09
payf1— 2
ps (1+ 2\

Recall that we choose A\ = %0.

The next lemma argues that p3 in this case is the smallest resolution parameter.

Lemma A.2 p3 < py < py

Proof: Since we fixed ps to be smaller than p;, we only have to prove that
p3 < pg. Consider Figure A.4: if CPLS is A-acceptable, then Zbca is sufficiently small
so that ps (the length of segment fh) is smaller than p, (the length of segment ce).
The claims follows. O

We do not encounter other magnitudes of resolution parameters, thus ps should
be the input resolution parameter. Then ¢y = p3 and we get that:

A.3. Concluding Perturbation Radii 68

piJ1 -
0= TN

We need to compute the value of p, in terms of the input parameters. If we change
the inequality above to an equation, we obtain an upper bound on p, which we use
below. We get that

(]_ + 2)\)80.[/

A2
T

(A7)

A.2.5 Computing 0,
As in the first phase, we want the perturbation disc size to be at least twice bigger

than the total area of all the forbidden loci. Then by using formulas A.4, A.5 and
A6, m63 > 2(F) + F> + F3) and we get that:

4pa m(m +3)(L + 61)

4 VL= P

The next theorem summarizes the complexity of the second phase.

dy > +2(m+1)) (A.8)

Theorem A.3 The second phase for all the segments takes O(nw?clog %) expected
time.

Proof: Each test for degeneracies takes O(1) time. Since we have an upper bound
of O(w) segments to check in each perturbation, O(w) tests are done as described in
Sections A.2.1 and A.2.3 while O(w?) tests are done as described in Section A.2.2 .
We get that ¥(w) = O(w?). According to Theorem 8.6, the second phase for all the
segments together takes O(nw?clog z—?) expected time. O

A.3 Concluding Perturbation Radii

We conclude the Appendix with a theorem that summarizes the magnitudes of §; and
.

A.3. Concluding Perturbation Radii 69

Theorem A.4 The magnitudes of 61 and 05 are:

5 > 8mRpy
m
4py m(m + 3)(L + SmBez
5 > L% (m +3)(z)+2(m+1))

m p2m

where

(1 + 2)\)80L
/1 — A2
4

Proof: The magnitudes are derived immediately from the Equations and In-
equalities A.1, A.3, A.7 and A.8. O

Bibliography

[1]

2]

3]

[4]

[5]

(6]
17l
8]

[9]

[10]

[11]

[12]

P. K. Agarwal and M. Sharir. Applications of a new space-partitioning technique.
Discrete Comput. Geom., 9:11-38, 1993.

. J. Balaban. An optimal algorithm for finding segment intersections. In Proc.
11th Annu. ACM Sympos. Comput. Geom., pages 211-219, 1995.

C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Efficient exact geometric
computation made easy. In Proc. 15th Annu. ACM Sympos. Comput. Geom.,
pages 341-350, 1999.

C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric com-
putations. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages 16-23,
1994.

J. Canny, B. R. Donald, and E. K. Ressler. A rational rotation method for robust
geometric algorithms. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages
251-260, 1992.

The CGAL User Manual, Version 2.4, 2002. www.cgal.org.

B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line
segments in the plane. J. ACM, 39(1):1-54, 1992.

M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld. Effi-
cient ray shooting and hidden surface removal. Algortihmica, 12:30-53, 1994.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Heidelberg, Germany,
1997.

O. Devillers and F. P. Preparata. A probabilistic analysis of the power of arith-
metic filters. Discrete Comput. Geom., 20:523-547, 1998.

H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: A technique to cope
with degenerate cases in geometric algorithms. ACM Trans. Graph., 9(1):66-104,
1990.

[. Z. Emiris, J. F. Canny, and R. Seidel. Efficient perturbations for handling
geometric degeneracies. Algorithmica, 19(1-2):219-242, Sept. 1997.

70

Bibliography 71

[13]

[14]

[15]

[16]

[17]

18]

[19]
[20]
[21]

22]

23]

[24]

[25]

[26]

A. Fabri, G. Giezeman, L. Kettner, S. Schirra, and S. Schonherr. On the design
of CGAL, the Computational Geometry Algorithms Library. Software - Practice
and Ezrperience, 30:1167-1202, 2000.

A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schonherr. The CGAL
kernel: A basis for geometric computation. In M. C. Lin and D. Manocha,
editors, Proc. 1st ACM Workshop on Appl. Comput. Geom., volume 1148 of
Lecture Notes Comput. Sci., pages 191-202. Springer-Verlag, 1996.

E. Flato. Robust and efficient construction of planar Minkowski sums.
M.Sc. thesis, Dept. Comput. Sci., Tel Aviv University, Tel Aviv, Israel, 2000.
http://www.cs.tau.ac.il/~flato/thesis.

S. Fortune. Vertex-rounding a three-dimensional polyhedral subdivision. Discrete
Comput. Geom., 22(4):593-618, 1999.

S. Fortune and C. J. van Wyk. Static analysis yields efficient exact integer
arithmetic for computational geometry. ACM Trans. Graph., 15(3):223-248,
July 1996.

M. Goodrich, L. J. Guibas, J. Hershberger, and P. Tanenbaum. Snap rounding
line segments efficiently in two and three dimensions. In Proc. 13th Annu. ACM
Sympos. Comput. Geom., pages 284—293, 1997.

D. H. Greene. Integer line segment intersection. Unpublished Manuscript.

D. H. Greene and F. F. Yao. Finite-resolution computational geometry. In Proc.
27th Annu. IEEE Sympos. Found. Comput. Sci., pages 143-152, 1986.

L. Guibas and D. Marimont. Rounding arrangements dynamically. Internat. J.
Comput. Geom. Appl., 8:157-176, 1998.

L. J. Guibas. Implementing geometric algorithms robustly. In Proc. 1st ACM
Workshop on Appl. Comput. Geom., pages 24-28, May 1996.

D. Halperin. Robust geometric computing in motion. In Algorithmic and Compu-
tational Robotics: New Dimensions (WAFR 2000), pages 9-22, 2001. To appear
in Int. J. of Robotics Research.

D. Halperin and E. Packer. Iterated snap rounding. Computational Geometry:
Theory and Applications, 23(2):209-225, 2002.

D. Halperin and C. R. Shelton. A perturbation scheme for spherical arrangements
with application to molecular modeling. Comput. Geom. Theory Appl., 10:273—
287, 1998.

I. Hanniel. The design and implementation of planar arrangements of curves in
CGAL. M.Sc. thesis, Dept. Comput. Sci., Tel Aviv University, Tel Aviv, Israel,
2000. http://www.math.tau.ac.il/~hanniel /thesis.ps.

Bibliography 72

[27] J. Hobby. Practical segment intersection with finite precision output. Comput.
Geom. Theory Appl., 13:199-214, 1999.

[28] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulations
using rational arithmetic. ACM Trans. Graph., 10(1):71-91, Jan. 1991.

[29] K. Mehlhorn and S. Néher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge, UK, 2000.

[30] K. Mehlhorn, S. Néher, C. Uhrig, and M. Seel. The LEDA User Manual, Version
4.1. Max-Planck-Insitut fiir Informatik, 66123 Saarbriicken, Germany, 2000.

[31] V. J. Milenkovic. Verifiable implementations of geometric algorithms using finite
precision arithmetic. Artif. Intell., 37:377-401, 1988.

[32] V. J. Milenkovic. Shortest path geometric rounding. Algorithmica, 27(1):57-86,
2000.

[33] S. Raab. Controlled perturbation for arrangements of polyhe-
dral surfaces with application to swept volumes. M.Sc. thesis,
Dept. Comput. Sci.,, Bar Ilan University, Ramat Gan, Israel, 1999.
http://www.math.tau.ac.il/~raab/master_thesis.ps.

[34] S. Raab. Controlled perturbation of arrangements of polyhedral surfaces with ap-
plication to swept volumes. In Proc. 15th Annu. ACM Sympos. Comput. Geom.,
pages 163-172, 1999.

[35] S. Schirra. Robustness and precision issues in geometric computation. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computational Geometry, chapter 14,
pages 597-632. Elsevier Science Publishers B.V. North-Holland, Amsterdam,
2000.

[36] R. Seidel. The nature and meaning of perturbations in geometric computing.
Discrete Comput. Geom., 19:1-17, 1998.

[37] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete Comput. Geom., 18(3):305-363, 1997.

[38] B. Stroustrup. The C++ Programming Language. 3rd edition, 1997.

[39] K. Sugihara. On finite-precision representations of geometric objects. .J. Comput.
Syst. Sci., 39:236-247, 19809.

[40] C. Yap. Towards exact geometric computation. Comput. Geom. Theory Appl.,
7(1):3-23, 1997.

[41] C. K. Yap. A geometric consistency theorem for a symbolic perturbation scheme.
J. Comput. Syst. Sci., 40(1):2-18, 1990.

Bibliography 73

[42] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O'Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 35, pages
653-668. CRC Press LLC, Boca Raton, FL, 1997.

