
TEL-AVIV UNIVERSITYRAYMOND AND BEVERLY SACKLERFACULTY OF EXACT SCIENCESSCHOOL OF COMPUTER SCIENCE

Finite-Pre
ision ApproximationTe
hniques for Planar Arrangementsof Line Segments
Thesis submitted in partial ful�llment of the requirements for the M.S
.degree in the S
hool of Computer S
ien
e, Tel-Aviv UniversitybyEli Pa
ker

The resear
h work for this thesis has been
arried out at Tel-Aviv Universityunder the supervision of Prof. Dan HalperinO
tober 2002

A
knowledgments
My deepest appre
iation to my supervisor Professor Dan Halperin, for his help, sup-port and en
ouragement during this thesis, and for always being available and atten-tive to any question or advi
e needed. A spe
ial thank is given to all the CGAL teampeople (past and present) in Tel Aviv University and for Mr. Ariel Tankus for theirvaluable help. Finally, I would like to thank my family for their support.

i

Contents
A
knowledgments i1 Introdu
tion 41.1 Robustness in Computational Geometry Algorithms 41.2 Software Libraries for Robust Geometri
 Computing 61.3 Thesis Outline . 6I Iterated Snap Rounding 92 Snap Rounding 103 Iterated Snap Rounding 143.1 The Distan
e Between a Vertex and a Non-In
ident Edge 143.2 Algorithm . 153.3 Algorithmi
 Details and Complexity Analysis 194
-Oriented Kd-Trees 235 Implementation Details 266 Rounding Examples: SR vs. ISR 286.1 Congestion Data . 286.2 Triangulation Data . 296.3 Geographi
 Data . 291

Contents 2II Controlled Perturbation of Line Segments 357 Controlled Perturbation 368 Controlled Perturbation of Line Segments 388.1 Introdu
tion . 388.2 Preliminaries and Key Ideas . 388.3 The Degenera
ies . 418.4 Algorithm . 418.5 Optimizations . 428.5.1 Tiling the Plane . 438.5.2 Redu
ing the Perturbation Magnitude 458.6 Computing � and m . 468.7 Approximating the Best Ratio (R) 488.8 Dis
ussion: Exa
t Arithmeti
 vs. Finite-Pre
ision Arithmeti
 498.9 The Main Theorem . 509 Implementation Details 5210 Experimental Results 5310.1 Congestion Data . 5310.2 Random Data . 5411 Implementation Details 5712 Con
lusion 5912.1 Iterated Snap Rounding . 5912.2 Controlled Perturbation of Line Segments 60A Computing Æ1 and Æ2 61A.1 First Phase: Computing Æ1 . 61A.2 Se
ond Phase: Computing Æ2 . 62A.2.1 Computing Forbidden Lo
i Indu
ed by P 0i�1 and si 63

Contents 3A.2.2 Computing Forbidden Lo
i Indu
ed by Interse
tions of Seg-ments of S 00i�1 and si . 64A.2.3 Computing Forbidden Lo
i Indu
ed by S 00i�1 [fp0ig and qi . . . 65A.2.4 A Lower Bound on the Distan
e Between an Interse
tion ofsi with an Already Inserted Segment and an Already InsertedSegment . 65A.2.5 Computing Æ2 . 68A.3 Con
luding Perturbation Radii . 68

Chapter 1Introdu
tion
In this
hapter we present the problem of robustness in
omputational geometry ingeneral and review work that has been done in this �eld. We fo
us on the subje
tof our resear
h, Finite-Pre
ision Approximation for arrangements of line segments inIR2. We
on
lude this
hapter with an outline of the thesis.1.1 Robustness in Computational Geometry Algo-rithmsThere are two major obsta
les in making the implementation of
omputational geom-etry algorithms and data stru
tures robust: the use of �oating-point arithmeti
 anddegenera
ies (or near-degenera
ies) in input data or that o

ur during intermediate
omputations. The two are
losely related sin
e �oating-point arithmeti
 problems areoften
aused by degenerate input data. When using �oating-point arithmeti
, a de-generate
ase is indu
ed not only by degenerate data, but also by
lose-to-degeneratedata. Sin
e �oating-point arithmeti
 is impre
ise, we
annot tell for sure whethera
ertain
ase is degenerate or
lose to be one. Thus we use the term potential de-genera
y. In what follows we sometimes drop the word potential before the worddegenera
y. We refer by robustness to the general goal of making geometri
 algo-rithms robust to the above obsta
les, namely making the implementations reliableand insensitive to them. For more details on robustness see, e.g., [23, 33, 35, 42℄.Many algorithms in
omputational geometry are designed and proven in a
ompu-tational model that assumes exa
t arithmeti
, while built-in number types are �niteand thus impre
ise. While the use of �nite-pre
ision arithmeti
 is often e�
ient, itis not robust when dealing with degenerate
ases or near-degenerate ones. In su
h
ases the primitives may lead to erroneous results. This problem is espe
ially
ompli-
ated for geometri
 algorithms be
ause they operate on a mixture of numeri
al and
ombinatorial data, whose
onsisten
y might be lost when using limited pre
isionarithmeti
. 4

1.1. Robustness in Computational Geometry Algorithms 5Exa
t arithmeti
 number types have been developed in re
ent years to
ope withrobustness in
omputational geometry [3, 29, 40℄. They provide exa
t and more robustimplementations but su�er from two major disadvantages. The �rst one is that theyare more
ostly in time and spa
e. The se
ond is that
ertain primitives (su
h astrigonometri
 fun
tions) are very hard to implement and are often not implementedat all.There are adaptive evaluation s
hemes that try to speed up running time andmaintain exa
tness at the same time. One form is the �oating-point �lter whi
happlies exa
t arithmeti
 only when determining answers with �oating-point is notpossible [10, 17, 28, 29, 37℄.Degenera
ies o

ur when the algorithm needs a spe
ial treatment (for examplethe
ollinearity of three points). While most algorithms assume general position,namely assume that degenera
ies do not o

ur, the problem of dealing with degen-era
ies is left to the implementor who �nds that this problem is very
ompli
ated,and requires
onsiderable resour
es. An e�ort to deal with degenera
ies dire
tly for
ertain problems is sometimes a viable solution [4, 15℄.Another kind of e�ort to deal with degenera
ies is by symboli
 perturbation. Theidea is to remove degenerate
ases by repla
ing ea
h
oordinate of every input obje
tby a polynomial in a su�
ient small " symboli
ally, while maintaining
onsisten
y ofthe input data [11, 12, 36, 41℄.Heuristi
 Epsilon is another approa
h to
oping with robustness issues. The ideais to treat the values whose di�eren
e is smaller than a small parameter " as equal.It is very simple to implement, but su�ers from the fa
t that the relation of equalityis not transitive [22, 40℄.Finite-Pre
ision Approximation The fo
us of the thesis. A Finite-Pre
isionApproximation is a
lass of prepro
essing pro
edures that perturb the input data tomake it more robust for the algorithm. The goal of most of them is to remove degen-era
ies whose identi�
ation is not de�nite. Thus the algorithms
an in fa
t assumegeneral position. Often su
h prepro
essing pro
edures are used to
onvert the inputdata into a low-pre
ision representation (su
h as Snap Rounding � see Chapter 2).A justi�
ation for this s
heme is that most likely the input data are obtained bymeasuring real world obje
ts whi
h might be impre
ise. Thus, if the perturbation issigni�
antly smaller than the possible measurement errors, it should not e�e
t the
orre
tness of the algorithm. Unlike other te
hniques to deal with robustness issues,su
h as arbitrary pre
ision number types, �nite-pre
ision approximation algorithmsare designed only for
ertain types of obje
ts. There are �nite-pre
ision approxima-tion algorithms that may also
hange the type of the data. For example in SnapRounding (see Chapter 2), a segment might be transformed into a polygonal
hain.It requires that algorithms that follow
an
ope with the new type of obje
ts. In thesequel we survey related work done in spe
i�
 areas of �nite-pre
ision approximation.In Chapter 2 we des
ribe work done on Snap Rounding and in Chapter 7 we refer

1.2. Software Libraries for Robust Geometri
 Computing 6to work on Controlled Perturbation. Additional te
hniques that fall in this
ategoryappear, for example, in [31, 32, 39℄.1.2 Software Libraries for Robust Geometri
 Com-putingIn order to support the robust use of geometri
 algorithms, several
omputationalgeometry groups have implemented robust geometri
 libraries. We fo
us on twowhi
h are
losely related to the work of this thesis.CGAL - the Computational Geometry Algorithm Library. Cgal is a
ol-laborative e�ort of several a
ademi
 institutes in Europe and Israel to develop a C++software library of robust geometri
 data stru
tures and algorithms [6, 14, 13℄. Themajor goals of the library are robustness, generality, �exibility, e�
ien
y and ease-of-use. The goals are a
hieved by applying both obje
t-oriented programming and thegeneri
 programing paradigm. The algorithms we des
ribe in this work have beenimplemented with a substantial use of Cgal
apabilities � see Chapter 5 for details.Our Iterated Snap Rounding pa
kage has been
ompletely �Cgalized� as a part ofthe e�ort of supplying robust implementation of geometri
 algorithms. For additionalexperimental resear
h whi
h extensively uses the Cgal library see [15, 23, 26, 33, 34℄.LEDA - the Library of E�
ient Data Stru
tures and Algorithms. A libraryof e�
ient data stru
tures and algorithms and a platform for
ombinatorial and ge-ometri

omputing on whi
h appli
ation programs
an be built [29, 30℄. It suppliesmodules su
h as graph algorithms, geometri
 obje
ts and algorithms or graphi
alI/O whi
h
over a
onsiderable part of
ombinatorial and geometri

omputing. Ourimplementations mainly use LEDA's arbitrary pre
ision number types, graphi
al win-dow and graphi
al output to a posts
ript �le. These
apabilities are used extensivelyby other Cgal implementations too.1.3 Thesis OutlineIn this thesis we present two algorithms to perturb arrangements of line segments inIR2 in order to make them more robust for further manipulation. Line segments inIR2 are the basis of a huge number of algorithms in
omputational geometry as wellas other �elds that deal with geometri
 data su
h as
omputer graphi
s,
omputer-aided geometri
 design, and more. Our perturbation algorithms are
ategorized as�nite-pre
ision approximation algorithms. Both of them serve as a prepro
essing stepfor geometri
 algorithms. We implemented both algorithms and present experimentalresults obtained with the implementation. The �rst one, Iterated Snap Rounding, is

1.3. Thesis Outline 7a variant of the well known Snap Rounding algorithm and the se
ond one, ControlledPerturbation of Line Segments, is an instan
e of the Controlled Perturbation s
heme,whi
h follows other instan
es that deal with di�erent kinds of geometri
 obje
ts.Below we outline both new algorithms.Iterated Snap Rounding. We point out that in a snap-rounded arrangement (seeChapter 2) the distan
e between a vertex and a non-in
ident edge
an be extremelysmall
ompared with the width of a pixel in the grid used for rounding. We proposeand analyze an augmented pro
edure, Iterated Snap Rounding, whi
h rounds the ar-rangement su
h that ea
h vertex is at least half-the-width-of-a-pixel away from anynon-in
ident edge. Iterated snap rounding preserves the topology of the original ar-rangement in the same sense that the original s
heme does. However, the guaranteedquality of the approximation degrades. Thus ea
h s
heme may be suitable in di�erentsituations. We des
ribe an implementation of both s
hemes. In our implementationwe substitute an intri
ate data stru
ture for segment/pixel interse
tion that is usedto obtain good worst-
ase resour
e bounds for Iterated Snap Rounding by a simpleand e�e
tive data stru
ture whi
h is a
luster of kd-trees. A paper des
ribing IteratedSnap Rounding was a

epted for publi
ation [24℄.Controlled Perturbation of Line Segments. We present a perturbation s
hemeto over
ome degenera
ies and pre
ision problems in
omputing an arrangement ofline segments in IR2. The idea behind this s
heme is that the output set of linesegments (set, for brevity) is built in
rementally by inserting the segments to the set,ea
h one in its turn, after possibly perturbing them in order to remove degenera
iesthat they indu
e. Thus the arrangement of the set that we build is degenera
y-free.The algorithm follows a s
heme named Controlled Perturbation � see Chapter 7 fordetails.The rest of the thesis is organized as follows. We divide it into two main parts:Iterated Snap Rounding and Controlled Perturbation of Line Segments. In the next
hapter we des
ribe the Snap Rounding s
heme and the work that has been done inthis area. In Chapter 3 we present our novel s
heme whi
h we
all Iterated SnapRounding. In Chapter 4 we present
-Oriented kd-Trees whi
h
onstitute an e�
ientsear
h stru
ture we use in the implementation of Iterated Snap Rounding, and de-s
ribe other implementation details in Chapter 5. In Chapter 6 we experimentally
ompare Snap Rounding and Iterated Snap Rounding. In Chapter 7 we des
ribe theControlled Perturbation s
heme and the work that has been done in this area. InChapter 8 we present Controlled Perturbation of line segments in IR2 and des
ribeimplementation details in Chapter 9. In Chapter 10 we present experimental resultsfor Controlled Perturbation of line segments. Con
luding remarks and possible di-re
tions for future work are given in Chapter 12. In Apendix A we supply furtherte
hni
al details
on
erning the analysis of the Controlled Perturbation algorithm.

Part IIterated Snap Rounding

9

Chapter 2Snap Rounding
Snap Rounding is a method that belongs to the family of �nite-pre
ision approxi-mation of geometri
 stru
tures. It
onverts an arrangement of line segments into alow-pre
ision representation.Given a �nite
olle
tion S of segments in the plane, the arrangement of S, de-noted A(S), is the subdivision of the plane into verti
es, edges, and fa
es indu
ed byS. A vertex of the arrangement is either a segment endpoint or the interse
tion oftwo or more segments. Given an arrangement of segments whose verti
es are repre-sented with arbitrary-pre
ision
oordinates, Snap Rounding (SR, for short) pro
eedsas follows [19, 27℄. We tile the plane with a grid of unit squares, pixels, ea
h
enteredat a point with integer
oordinates. A pixel is hot if it
ontains a vertex of the ar-rangement. Ea
h vertex of the arrangement is repla
ed by the
enter of the hot pixel
ontaining it and ea
h edge e is repla
ed by the polygonal
hain through the
entersof the hot pixels met by e, in the same order as they are met by e. See Figure 2 foran illustration.In the pro
ess, verti
es and edges of the original arrangement may have
ollapsed.However, the rounded arrangement preserves
ertain topologi
al properties of the orig-inal arrangement: The rounding
an be viewed as a
ontinuous pro
ess of deforming
urves (the original segments into
hains) su
h that no vertex of the arrangement ever
rosses through a
urve [21℄ (see Figure 2.2 for an illustration). The rounded versions0 of an original segment s approximates s su
h that s0 lies within the Minkowski sumof s and a pixel
entered at the origin.RelatedWork. Greene and Yao [20℄ were the �rst to propose a rounding s
heme forpolygonal subdivisions. They show that a simple rounding to the
losest grid pointsviolates topologi
al properties and therefore a more sophisti
ated approa
h should betaken. They developed a method for perturbing lines slightly at grid points. They dothat by introdu
ing the notion of hooks. A hook is a ve
tor from a point to its nearestgrid point. The idea behind their method is that interse
tions between segments, aswell as interse
tions between segments and hooks, are rounded. This rounding s
heme10

11

(a) (b)Figure 2.1: An arrangement of segments before (a) and after (b) snap rounding (hotpixels are shaded)

Figure 2.2: Two examples of topology violation that are ruled out in SR

12is a

omplished without violating many of the topologi
al properties. This methodprovides a link between the
ontinuous and the dis
rete domain. The problemati
aspe
t is that the number of links of a polyline (namely the number of segments thepolyline is
omposed of), whi
h is the output for a segment,
an be large. It
an bemu
h greater than the same number for SR sin
e the idea of SR to break segmentswhere they interse
t hot pixels eliminates the extraneous interse
tions. The time
omplexity of the method is O((n + k) logn + hi) where n is the number of inputsegments, k is the number of interse
tions among the input segments and hi is thenumber of indu
ed hooks.Hobby [27℄ and Greene [19℄ proposed the SR paradigm. Hobby's algorithm [27℄ forSR is based on the Bentley-Ottmann sweep line algorithm for �nding interse
tions ofline segments (although other algorithms
an be applied as well). During the sweepthey round the arrangement by utilizing many properties of the hot pixels. The time
omplexity of the algorithm is O((n+ k) logn+Ph2H jhj) where n is the number ofinput segments, k is the number of interse
tions among the input segments, H is theset of hot pixels and jhj is the number of segments interse
ting a hot pixel h.Guibas and Marimont [21℄ give a dynami
 algorithm for snap rounding an arrange-ment of segments in the sense that segments
an be inserted or removed dynami
allyfrom the SR representation. They do it by using ideas from Mulmuley's dynami
in
remental
onstru
tion algorithm of a point lo
ation stru
ture based on trapezoidalde
omposition of the arrangement, while maintaining (and produ
ing) only the SRrepresentation of the arrangement of the
urrent segments. They also give elementaryproofs of the topologi
al properties maintained by SR.Goodri
h et al. [18℄ present an output sensitive algorithm for SR without �rstdetermining all the interse
tion pairs of segments in the input. The main idea isto improve the running time of the algorithm when many segments interse
t in ahot pixel. Let b be the number of segments interse
ting inside a pixel. The formermethods had a overhead time of
(b2) while here the overhead time is O(b log b). Thusthe time
omplexity depends on the number of segments and the
omplexity insidehot pixels and it is O(n logn +Ph2H jhj logn) where the parameters are de�ned asabove. They present two algorithms: the �rst one is deterministi
 with the abovetime
omplexity and the se
ond one is randomized with the same expe
ted runningtime. The �rst one is based on a plane sweep strategy with spe
ial treatment tohot pixels in order to �nd all the segments that interse
t it. The se
ond one isbased on dynami
ally maintaining a trapezoidal de
omposition of both segments andboundaries of hot pixels. They also extend SR to a set of line segments in IR3 andgive an output-sensitive algorithm to
ompute rounded arrangements. The idea is toround segments to voxels grid. Unlike snap rounding in IR2, segments that almostinterse
t might indu
e a hot voxel and thus are rounded to its
enter. It is done byde�ning a
onne
tor to be the smallest segment
onne
ting two given segments. Hotvoxels are de�ned as the ones that
ontain segments' endpoints or
onne
tors whi
hare smaller than one unit. Then all segments are rounded to hot voxels.Fortune [16℄ extends SR to three dimensions. The input to his algorithm is a

13polyhedral subdivision P in IR3 with a total of n fa
ets. He shows that there is anembedding of the verti
es, edges, and fa
ets of P into a subdivision Q, where everyvertex
oordinate of Q is an integral multiple of 2�dlog2 n+2e. The embedding preservesor
ollapses verti
al order on fa
es of P . The subdivision Q has O(n4) verti
es in theworst
ase, and
an be
omputed in the same time.

Chapter 3Iterated Snap Rounding
3.1 The Distan
e Between a Vertex and a Non-In
identEdgeWe �rst
laim that degenera
ies may be indu
ed in the output of SR. The main moti-vation of the ISR algorithm that we present next, is to eliminate those degenera
ies.Consider the two segments s; t displayed in Figure 3.1 before and after SR. Wedenote the right endpoint of s0 by s0r. (Re
all that u0 is the rounded version of u.)After rounding, t0 penetrates the hot pixel
ontaining s0r, but it does not pass throughits
enter.We
an modify the input segment t so that t0 be
omes very
lose to s0r: we movethe left endpoint of t arbitrarily
lose to the top right
orner of the pixel
ontainingit. We verti
ally translate the right endpoint of t far downwards (outside its originalpixel) �the farther down we translate it, the
loser t0 will be to s0r.

(a) (b)

t s0 t0s
Figure 3.1: A vertex be
omes very
lose to a non-in
ident edge after (b) snap roundingWe
annot make t0 arbitrarily
lose to s0r. If they are not in
ident then there isa lower bound on the distan
e between them. This distan
e, however,
an be rathersmall. Let b denote the number of bits in the representation of the vertex
oordinatesof the output
hains of SR. We tile a bounding square of the arrangement with 2b�2bunit pixels. In this setting the distan
e between t0 and s0r
an be made as small as14

3.2. Algorithm 15
(b) (
) (d)(a)

s01 s11 s2;11 s2;21 s3;11 s3;21s3;31
Figure 3.2: Iterated snap rounding for the input (a) results in (d)1=p(2b � 1)2 + 1 � 2�b.One
ould argue that although SR produ
es near-degenerate output, it is still pos-sible, during the rounding pro
ess, to determine the
orre
t topology of the roundedarrangement in the hot pixel
ontaining s0r. However, this requires that the outputof SR should in
lude additional information beyond the simple listing of polygonal
hains spe
i�ed by their rounded verti
es, making it more
umbersome to use andfurther manipulate.3.2 AlgorithmWe augment SR to eliminate the near-degenera
ies mentioned above. Our pro
edure,whi
h we
all iterated snap rounding (ISR, for short), produ
es a rounded arrangementwhere an original segment is substituted by a polygonal
hain ea
h vertex of whi
h isat least 1=2 a unit distant from any non-in
ident edge.Let S = fs1; s2; : : : ; sng be the
olle
tion of input segments whose arrangementwe wish to round. Re
all that a pixel is hot if and only if it
ontains a vertex of theinput arrangement. Let H denote the set of hot pixels indu
ed by A(S).Our goal is to
reate
hains out of the input segments su
h that a
hain that passesthrough a hot pixel is re-routed to pass through the pixel's
enter. The di�
ulty isthat on
e we reroute a
hain it may have entered other hot pixels and we need tofurther reroute it, and so on.Our rounding algorithm
onsists of two stages. In a prepro
essing stage we
om-pute the hot pixels (by �nding all the verti
es of the arrangement) and prepare asegment interse
tion sear
h stru
ture D on the hot pixels to answer queries of thefollowing type: Given a segment s, report the hot pixels that s interse
ts. In these
ond stage we operate a re
ursive pro
edure, Reroute, on ea
h input segment.We postpone the algorithmi
 details of the prepro
essing stage to the next se
tionsand
on
entrate here on the rerouting stage.Reroute is a �depth-�rst� pro
edure. As we show below, the rerouting that we

3.2. Algorithm 16propose does not add more hot pixels, so whenever we refer to the set of hot pixelswe mean H. The input to Reroute is a segment s 2 S. The output is a polygonal
hain s� whi
h approximates s. Whenever s� passes through a hot pixel, it passesthrough its
enter. See Figure 3.2 for an illustration.We next des
ribe the ISR algorithm. The routine Reroute will produ
e anoutput
hain s�i in the global parameter output_
hain as an ordered list of links.If a segment is
ontained inside a single pixel, the
hain degenerates to a single point.ISRInput: a set S of n segmentsOutput: a set S� of n polygonal
hains; initially S� = ;/* stage 1: prepro
essing */1.
ompute the set H of hot pixels2.
onstru
t a segment interse
tion sear
h stru
ture D on H/* stage 2: rerouting */3. for ea
h input segment s 2 S4. initialize output_
hain to be empty5. Reroute(s)6. add output_
hain to S�7. end forReroute(s)/* s is the input segment with endpoints p and q */1. query D to �nd Hs, the set of hot pixels interse
ted by s2. if Hs
ontains a single hot pixel /* s is entirely inside a pixel */3. then add the
enter of the hot pixel
ontaining s to output_
hain4. else5. let m1; m2; : : : ; mr be the
enters of the r hot pixels in Hs in the orderof the interse
tion along s6. if (r = 2 and p; q are
enters of pixels)7. then add the link m1m2 to output_
hain8. else9. for i = 1 to r � 110. Reroute(mimi+1)We next dis
uss the properties of the pro
edure.We �x an orientation for ea
h input segment and its indu
ed
hains: it is orientedin lexi
ographi
ally in
reasing order of its verti
es. Thus, a non-verti
al segment forexample is oriented from its left endpoint to its right endpoint. (The orientation ofa
hain is well de�ned sin
e, as is easily veri�ed, a
hain is (weakly) x-monotoneand (weakly) y-monotone.) We represent the operation of Reroute on a segmentsi as a tree Ti. The root
ontains si. The leaves of the tree
ontain the outputpolygonal
hain s�i , one link in ea
h node, ordered from left to right where the �rst

3.2. Algorithm 17s01s11s2;11s3;11 s2;21s3;21 s3;31Figure 3.3: The tree T1
orresponding to Reroute(s1) for s1 of Figure 3.2. Nodesdenoted by full-line
ir
les
ontain segments with whi
h we query the stru
ture D.The dashed-line
ir
le denotes a node
ontaining an exa
t
opy of the segment of itsparent.link is in the leftmost leaf. Ea
h internal node � together with its
hildren representone appli
ation of Reroute (without re
urren
e): the segment s of �, whi
h passesthrough the hot pixels with
enters m1; m2; : : : ; mr, is transformed into the linksmqmq+1; q = 1; : : : ; r � 1 whi
h are pla
ed in the
hildren of � ordered from left toright to preserve the orientation of the
hain. We denote all the segments in the nodesat the jth level from left to right by sj;1i ; sj;2i ; : : : ; sj;li;ji , where li;j denotes the numberof nodes at this level. We denote the
hain
onsisting of all the links at level j orderedfrom left to right by sji . Thus s0i = si. We denote by ki the depth of the tree for si,and let k := maxni=1 ki. For notational
onvenien
e, if a leaf � is at level k� < k thenwe add a linear path of ki � k arti�
ial nodes des
ending from � and all
ontainingthe same link that �
ontains (we denote it di�erently at any level a

ording to thelevel). See Figure 3.3 for an illustration of the tree T1
orresponding to segment s1 ofFigure 3.2. We denote by s(�) the segment (or link) that is
ontained in the node �.The next lemma gives an alternative view of ISR.Lemma 3.1 Given a set of segments S, the output of ISR is equivalent to the �naloutput of a �nite series of appli
ations of SR starting with S, where the output of oneSR is the input to the next SR.Proof: On
e we determine the hot pixels H, snap rounding an input segment s (i.e.,by the standard SR)
an be done independently of the other segments. That is, theinformation ne
essary for rounding is in H. Noti
e that the
hains s1i ; i = 1; : : : ; nare the result of applying SR to the original input segments S.The
ru
ial observation is that SR does not
reate new hot pixels. It
an breaka segment into two segments that meet at the
enter of an existing hot pixel, but it
annot
reate a new endpoint nor a new interse
tion point (with another segment)

3.2. Algorithm 18whi
h are not at the
enter of an existing hot pixel�this would violate the topologypreservation properties of SR [21℄.It follows that with the same set H of hot pixels, the
hains sj+1i ; i = 1; : : : ; n arethe result of applying SR to the links in the
hains sji ; i = 1; : : : ; n, and so on.The pro
ess terminates when the link in ea
h leaf of the tree has its endpointsin the
enter of hot pixels and it does not
ross any other hot pixel besides the hotpixels that
ontain its endpoints.The tree
ontinues to grow beyond level j only as long as for at least one node �in level j when we query with s(�) we dis
over a new hot pixel through whi
h s(�)passes. We
laim that a hot pixel is not dis
overed more than on
e per tree. This isso sin
e, as already mentioned, ea
h
hain sji is (weakly) x-monotone and (weakly)y-monotone. Sin
e there are at most O(n2) hot pixels, the pro
ess will stop after a�nite number of steps. �The lemma's algorithmi
 interpretation is ine�
ient, but it is useful for provingsome of the following properties.Corollary 3.2 ISR preserves the topology of the arrangement of the input segmentsin the same sense that SR does.Proof: The topologi
al properties that are preserved by SR
an be summarized byviewing SR as a
ontinuous pro
ess of deforming
urves (the original segments into
hains) su
h that no vertex of the arrangement ever
rosses through a
urve [21℄.Sin
e SR does not
reate new verti
es, the assertion follows from Lemma 3.1. �Lemma 3.3 (i) If an output
hain of ISR passes through a hot pixel then it passesthrough its
enter.(ii) In the output
hains ea
h vertex is at least 1/2 a unit away from any non-in
identsegment.Proof: Claim (i) follows from the de�nition of the pro
edure Reroute. Sin
e allthe verti
es of the rounded arrangement are
enters of hot pixels,
laim (ii) is animmediate
onsequen
e of (i). �A drawba
k of ISR is that an output
hain s�i
an be farther away from theoriginal segment si
ompared with the
hain produ
ed for the same input segment bySR. Re
all that ki denotes the depth of the re
ursion of Reroute(si).Lemma 3.4 A �nal
hain s�i lies in the Minkowski sum of si and a square of sidesize ki
entered at the origin.

3.3. Algorithmi
 Details and Complexity Analysis 19Proof: In SR, a rounded segment s0 lies inside the Minkowski sum of the inputsegment s and a unit square
entered at the origin. Sin
e ISR is equivalent to kiappli
ations of SR, the
laim follows. �This deviation may be a

eptable in situations where the pixel size is su�
ientlysmall or when k := maxni=1 ki is small.3.3 Algorithmi
 Details and Complexity AnalysisLet I denote the number of interse
tion points of segments in the original arrange-ment A(S). We �rst
ompute the set H of hot pixels. For that we use an algorithmfor segment interse
tion. This
ould be done with a plane sweep algorithm, or moree�
iently in O(I + n logn) time by more involved algorithms [2, 7℄. To
ompute thehot pixels, the algorithm should also be given a pixel's width w and a point p thatwill be assigned the
oordinate (0; 0). The plane will be tiled with pixels that wewill
onsider to be of unit width, and their
enters will have integer
oordinates. Wedenote the number of hot pixels by N . Noti
e that N is at most O(n+ I).Remark. One
ould alternatively dete
t the hot pixels by the SR algorithm ofGoodri
h et al. [18℄ and thus get rid of the dependen
e of the running time of thealgorithm on the number of interse
tions I. Noti
e however that for this step alone(namely for dete
ting the hot pixels) and for
ertain inputs (e.g., the input depi
tedin Figure 3.4 and des
ribed below) this alternative is
ostly.Next we prepare the data stru
ture D on the hot pixelsH to answer segment inter-se
tion queries. We
onstru
t a multi-level partition tree [1℄ on the verti
al boundarysegments of the hot pixels, and an analogous tree for the horizontal boundary seg-ments. The partition trees report the segments interse
ted by a query segment sfrom whi
h we dedu
e the hot pixels interse
ted by s. Ea
h tree requires O(M1+")prepro
essing time when allowedM units of storage for N �M � N2. A query takesO(N1+"=pM + g) time, where g is the number of hot pixels found [1℄.How many times do we query the stru
ture D for segment interse
tion?Lemma 3.5 If an output
hain s�i
onsists of li links then during Reroute(si) thestru
ture D is queried at most 2li times.Proof: During Reroute(si) when we query with a link (line 1 of Reroute) eitherwe do not �nd new hot pixels (new for the rounded version of si) in whi
h
ase we
harge the query to the link whi
h is then a link of the �nal
hain, or we
harge it tothe �rst new hot pixel (re
all that we assigned an orientation to ea
h segment and toea
h link). Ea
h �nal link is
harged exa
tly on
e and ea
h vertex of the �nal
hainis
harged at most on
e, besides the last vertex whi
h is never
harged. The bound

3.3. Algorithmi
 Details and Complexity Analysis 20follows. �Let L denote the overall number of links in all the
hains output by ISR. Wesummarize the performan
e bounds of ISR in the following theorem.Theorem 3.6 Given an arrangement of n segments with I interse
tion points, theiterated snap rounding algorithm requires O(n logn + I + L2=3N2=3+" + L) time forany " > 0 and O(n + N + L2=3N2=3+") working storage , where N is the number ofhot pixels (whi
h is at most 2n+ I) and L is the overall number of links in the
hainsprodu
ed by the algorithm.Proof: To �nd the interse
tions of the input segments we use Balaban's algorithmwhi
h requires O(n logn + I) time and O(n) working storage. When an interse
tionis found we simply keep its
orresponding hot pixel. For
onstru
ting and queryingthe multi-level partition trees (by Lemma 3.5 we perform at most 2L queries overall)we use a standard tri
k that balan
es between the prepro
essing time and the overallquery time, and does not require that we know the number of queries in advan
e.See, e.g., [8℄. �Next we dis
uss
ombinatorial bounds on the maximum
omplexity of the roundedarrangements. Interestingly, as shown next, there is no di�eren
e between the maxi-mum asymptoti

omplexity of the rounded arrangements between SR and ISR.Theorem 3.71 Given an arrangement of n segments in the plane, in its roundedversion: (i) the maximum number of hot pixels through whi
h a single output
hainpasses is �(n2), and (ii) the maximum overall number of in
iden
es between output
hains and hot pixels is �(n3). (iii) The maximum number of segments in the roundedarrangement (namely without
ounting multipli
ities) is �(n2), and if the input seg-ments indu
e N hot pixels then this number is �(N). All these bounds apply both toSR and to ISR.Proof: The upper bounds in
laims (i) and (ii) are obvious. To see that thesebounds are tight
onsider the following
onstru
tion (see Figure 3.4). We take n=2long horizontal segments spanning a row of n2=4 pixels. Next we take n=2 short,slightly slanted segments, ea
h spanning n=2 pixels su
h that overall ea
h pixel in therow is interse
ted by exa
tly one short segment. The short segments are slanted su
hthat in ea
h pixel that they
ross they interse
t exa
tly one of the long segments.Ea
h pixel in the row is now a hot pixel, and ea
h of the long segments
rosses allthe hot pixels. The rounding obtained with both SR and ISR is the same.1The slanted version of our horizontal
onstru
tion was suggested to us by Olivier Devillers.Claim (iii) is due to Mark de Berg.

3.3. Algorithmi
 Details and Complexity Analysis 21
Figure 3.4: �(n)
hains in the rounded arrangement are ea
h in
ident to �(n2) hotpixels

Figure 3.5: The slanted version yields �(n) rounded segments with �(n2) links ea
hThe
onstru
tion yields a degenerate rounded arrangement. Ea
h of the output
hains is in fa
t a horizontal line segment. This
onstru
tion
an be slanted so thatea
h rounded version of a long segment is a
hain with �true�
(n2) links. In theslanted version we use n2=2 pixels arranged in n2=4 rows. In ea
h row at least onepixel is hot. See Figure 3.5 for an illustration.Finally, we ignore the
hains, and we ask how
omplex
an the rounded arrange-ment be, that is, we ignore multipli
ities (overlap) of
hains. Obviously, the roundedarrangement
an have
(n2)
omplexity. But this is also an upper bound sin
e the(rounded) arrangement has N verti
es and it is a planar graph. Therefore the numberof edges
an be at most O(N). N
an be at most O(n2). Again, our arguments donot depend on how the rounding was done (by SR or ISR). �We
on
lude this se
tion with a worst-
ase tight bound on the distan
e betweenan original segment and its output
hain produ
ed by ISR.Theorem 3.8 The maximum distan
e between an input segment and its output
hainis �(n2).Proof: Re
all that n is the number of segments in the input. Let d be the distan
ebetween a
ertain input segment and its output
hain. Sin
e there are at most O(n2)hot pixels and ea
h one may add at most p2=2 units to d, the upper bound follows.To see that this bound is tight,
onsider Figure 3.6(a)2. There are n� 1 segments ar-ranged verti
ally similar to the
onstru
tion in Figure 3.4, indu
ing �(n2) hot pixels.2A similar idea that is improved by this example was suggested by Shai Hirsh.

3.3. Algorithmi
 Details and Complexity Analysis 22We refer to this
onstru
tion asW. The segments ofW together with the segment weadd below
ompose the input. The
enter of the lowest hot pixel inW is at (0; 0) whilethe highest one is at (0; a) where a = �(n2) and even. We add a segment with integer
oordinates s = ((0; a); (b; 0)) (meaning that the endpoints of s are (0; a) and (b; 0))where b = a2 . There are no other segments in the input besides the ones involved inWand s. Thus there are no hot pixels lying to the right ofW beside the one
entered at(b; 0). Let s� be the output
hain for s. Noti
e that for ea
h
, b �
 � a, the segment((0;
); (b; 0)) interse
ts the hot pixel whose
enter is at (0;
 � 1). Therefore duringthe pro
ess of ISR, s� will slide down W, ea
h time penetrating more hot pixels frombelow. The work on s� stops when rea
hing the hot pixel whose
enter is at (0; b�1).Thus s� will be
omposed of the
hain (0; a); (0; a � 1) : : : (0; b); (0; b � 1); (b; 0) (seeFigure 3.6 for an illustration). It is easy to verify that the distan
e from (0; b � 1)(whi
h is a vertex of s�) to s is
(n2). The
laim follows. �

(b)
s0s

(a)Figure 3.6: An input example for whi
h the maximum distan
e between the input(a) and the output
hain of ISR (b) is
(n2)

Chapter 4
-Oriented Kd-Trees
In our implementation we use a plane sweep algorithm to �nd the interse
tions be-tween segments in S and thus we identify the hot pixels. The non-trivial part toimplement is the sear
h stru
ture D with whi
h we answer segment/pixel interse
-tion queries. In the theoreti
al analysis we use partition trees for D, as these lead toasymptoti
ally good worst-
ase
omplexity. In pra
ti
e, (multi-level) partition treesare di�
ult to implement. Instead, we implemented a data stru
ture
onsisting ofseveral kd-trees. Next we explain the details.Observation 4.1 A segment s interse
ts a pixel p of width w, if and only if theMinkowski sum of s with a pixel of width w
entered at the origin
ontains the
enterof p.We
ould use Observation 4.1 in order to answer segment interse
tion queries inthe following way: build a range sear
h stru
ture on the
enters of the hot pixels.Let s be the query segment and M(s) be its Minkowski sum with a pixel
entered atthe origin. Then query the stru
ture with the range M(s). Unfortunately, the knowndata stru
tures for this type of queries are similar to the multi-level data stru
turesthat we have used in Chapter 3.Instead we use kd-trees as an approximation of this s
heme. A kd-tree answersrange queries for axis-parallel re
tangles [9℄. Its guaranteed worst-
ase query time isfar from optimal but it is pra
ti
ally e�
ient. A trivial solution would be to querywith the axis-parallel bounding box ofM(s), whi
h we denote by B(s); see Figure 4.1.This may not be su�
iently satisfa
tory sin
e the area of B(s), whi
h we denote byjB(s)j, may be mu
h larger than the area of M(s).If we rotate the plane together with M(s) the (area of the) axis-parallel boundingbox
hanges whereas M(s) remains �xed. The di�eren
e between the bounding boxesfor two di�erent rotations
an be huge. Our goal is to produ
e a number of rotated
opies of the set of
enters of hot pixels so that for ea
h query segment s there will beone rotation for whi
h the area of the bounding box is not too mu
h di�erent from23

24
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

Figure 4.1: The bounding box of the Minkowski sum of a segment with a pixel
entered at the origin. The shaded area is the redundant range.the area of M(s). Noti
e that if a segment s is rotated by �=2 radians, the size of therelevant bounding box remains the same. Sin
e the determination of whi
h rotationto
hoose is dependent only on the size of the respe
tive bounding box, the range ofrotations should be the half-open interval [0 : �=2).We
onstru
t a
olle
tion of kd-trees ea
h serving as a range sear
h stru
ture for arotated
opy of the
enters of hot pixels. We
all this
luster
-oriented kd-trees. Let
 be a positive integer and let �i := (i� 1) �2
 for 1 � i �
. The stru
ture
onsistsof
 kd-trees su
h that the i-th kd-tree, denoted by kdi, has the input points rotatedby �i. Let Ri(s) be the segment s rotated by �i. For ea
h query with segment s wedo the following: for ea
h kdi; 1 � i �
, we
ompute jB(Ri(s))j. Let 1 � h �
 bethe serial number of the kd-tree for whi
h jB(Rh(s))j = min
i=1 jB(Ri(s))j. Then weuse the h-th kd-tree to answer the query with the segment s rotated by �h. Finally,we dis
ard all the points for whi
h the segment does not interse
t the respe
tive hotpixels.We next dis
uss a few important issues regarding the implementation and usageof this stru
ture.
Exa
t rotations. We used exa
t arithmeti
 to implement ISR. Unfortunately, theavailable exa
t arithmeti
 number types do not support the
al
ulations of sines and
osines whi
h are ne
essary for
al
ulating rotations. Instead we use only anglesfor whi
h the sines and
osines
an be expressed as rational numbers with smallenumerator and denominator [5℄. We keep an array Z of approximations to the sinesof integer degree angles between 0 � 89. We emphasize that on
e we �x an angle� we have the exa
t sine and
osine of �. What we
annot do is obtain the exa
tvalues of the trigonometri
 fun
tions of a pres
ribed arbitrary angle. Sin
e our
hoi
eof rotation angles is heuristi
 to begin with, the pre
ise angle is immaterial, and theangle we use is never more than one degree o� the pres
ribed angle. Moreover, thereare te
hniques to a
hieve better approximations [5℄, but we prefer not to use thembe
ause of performan
e reasons.

25How big should
 be? There are advantages and drawba
ks in using few kd-tress,say even one kd-tree
ompared to using many. When using one kd-tree, we are proneto get many false points in the range queries, resulting in more time to �lter out theresults. When using many kd-trees, we need to invest time in their
onstru
tion anda little more time per query to �nd the best rotation. Our experiments show that inmany
ases a small number of trees su�
es. Consider for example the numeri
al table�di�erent number of kd-trees� in Figure 6.1. (The rounding example in this �gure aswell as the other examples are explained in detail in Chapter 6; here we only refer tothe number of kd-trees used in their
omputation.) The �rst
olumn shows how manykd-trees were used and the last
olumn shows how mu
h time the overall reroutingstage took
ompared with the time when using only one kd-tree (the full legend isgiven in Table 10.1). The best performan
e is obtained when we use 7 kd-trees. Thetime savings in this
ase is 17% over using a single kd-tree. The analogous table inthe next example (Figure 6.2) shows that in that example there is no bene�t in usingmore than one kd-tree.1 In the next paragraph we present a heuristi
 improvementof the number of kd-trees. However, we leave the
omputation of the best number ofkd-trees together with the best rotation angles of ea
h one for further resear
h.Skipping kdi's. Sin
e
 should be small, we expe
t most of the links of a
ertaininput segment to have the same rotation as the input segment, sin
e they should allhave nearby slopes. Let Ji be the number of input segments that are rotated by �i.If Ji is very small, it is not e�e
tive to
reate the respe
tive kd-tree. Thus we �xa lower limit � , and
onstru
t a kd-tree kdi only if Ji � � . Obviously � should bea fun
tion of
, and be su�
iently small to ensure that at least one kd-tree will be
onstru
ted. We
hose to use � = n2
 . In the examples of Figures 6.1 and 6.2 Ji isalways greater than n2
 . In other examples, su
h as geographi
 data, not all
 treesare always
onstru
ted�in Figure 6.3, when the algorithm is given
 > 7 it
hoosesto skip some of the kdi's. In this example, using more than one kd-tree is wastefulsin
e the map is relatively sparse, most of the segments are relatively small
omparedto the whole map and the bounding box of their Minkowski sum with a unit pixeldoes not interse
t many hot pixels
enters.

1The running time indi
ated in the tables is in se
onds while using arbitrary pre
ision rationalarithmeti
. The pixel size in the �rst example is 1 and in the se
ond example is 15.

Chapter 5Implementation Details
We implemented ISR in C++, using many
apabilities of Cgal [6℄. The pa
kagede�nes a C++
lass to work on [38℄. The programmer uses our pa
kage by
reatinginstan
es of the
lass. The implementation is generi
 in the sense that ea
h
lassis templated with a number type of whi
h the data are
omposed. The user of oursoftware
hooses whi
h number type to apply with the template me
hanism of theC++ language.The main input of the pa
kage is a set of line segments while the output is a setof polygonal
hains.The user
an
hoose the output format. It
an be either a text �le des
ribing theoutput or a graphi
 window in whi
h both the input and the output are drawn (thegraphi
 window is the Leda window [29℄).Ex
ept for Cgal
apabilities that we expli
itly mention, we applied other Cgalelements su
h as geometri
 predi
ates, points, segment, ve
tor and interse
tion oper-ations.The pa
kage supports both ISR and SR. It is up to the user to de
ide whi
hone to apply. The way to
onvert the ISR algorithm to SR is simply to
onstrainthe re
ursion depth of the Reroute routine to one (see Chapter 3), meaning thatthe output polygonal
hains are determined immediately by the hot pixels that theoriginal segments interse
t.ISR and SR are
onveniently implemented with an exa
t number type, otherwisethe topology of the input line segments may be violated. We implemented ISR withthe Leda rational number type [29℄. It is possible that under
ertain assumptions, SRand ISR may be implemented with �nite-pre
ision arithmeti
.Re
all that we use the
-oriented kd-trees as our sear
h stru
ture (see Chapter 4).As a �rst step for
reating the
-oriented kd-trees, we have to �nd the hot pixels.This is done by applying a plane sweep algorithm [6℄. For that we use the planesweep pa
kage of Cgal. Re
all that the
-oriented kd-trees are
omposed of severalkd-trees. We use the kd-tree pa
kage of Cgal to implement that. The user
an26

27
hoose the number of trees to use.The ISR pa
kage has be
ome a part of Cgal.

Chapter 6Rounding Examples: SR vs. ISR
To give the �avor of how the output of ISR di�ers from that of SR we present therounding results for three input examples; see Figures 6.1, 6.2, and 6.3. For ea
hexample we display the input, the SR result and the ISR result. Then we zoom inon a spe
i�
 area of interest in these three drawings�an area where the roundings
hemes di�er noti
eably. A square near a drawing represents the a
tual pixel sizeused for rounding. Then we provide two tables of statisti
s. The �rst one refers tothe best number of kd-trees as related to the dis
ussion in the previous se
tion. These
ond table summarizes the di�eren
es in the rounding for di�erent pixel sizes. Theabbreviations we use in these two tables are explained in Table 6.1. The deviation ofa
hain from its indu
ing segment s is the maximal distan
e of a point on the
hainfrom s.6.1 Congestion DataThe data
ontains 200 segments with 18; 674 interse
tions; see Figure 6.1. (For
larity,the pi
tures in Figure 6.1 depi
t a similar example with only 100 segments.) Thebottom left part of the arrangement is zoomed in.Both rounding s
hemes will
ollapse thin triangles that have two
orners
loseby. However, not allowing proximity between verti
es and non-in
ident edges, ISR
ollapses `skinny' fa
es of the arrangement that SR does not (see the bottom of thezoomed-in area), for example triangles that have one
orner
lose to the middle ofthe opposite edge.For pixel size 1, SR and ISR are very di�erent and the number of verti
es thatare less than half a unit away from a non-in
ident edge in the SR output is in thehundreds. The average deviation in ISR in this example is never more than 2.5times that of the
orresponding SR output. For pixel size greater than 1 the averagedeviation of a
hain in ISR is almost the same as in SR. However, for pixel size smallerthan 1, the average deviation is larger in the ISR output than in the SR output.28

6.2. Triangulation Data 29Abbreviation Explanationinkd input number of kd-treesnkd a
tual number of kd-trees
reatednfhp overall number of false hot pixels in all the queriestt total time relative to using one treemd maximum deviation over all
hainsad average deviationmnv maximum number of verti
es in an output
hainanv average number of verti
es in an output
hainmdvs minimum distan
e between a vertex and a non-in
ident edgen
vs number of pairs of a vertex and a non-in
ident edgethat are less than half the width of a pixel apartps pixel sizenhp number of hot pixelsTable 6.1: AbbreviationsIn terms of
ombinatorial
omplexity the results are similar and the average num-ber of verti
es per
hain is roughly the same in both outputs. This is a phenomenonwe have observed in all our experiments.6.2 Triangulation DataFigure 6.2 shows a set of input points (
ourtesy of Ja
k Snoeyink) and a triangulationof this set. The triangulation
onsists of 906 segments. The zoomed in pi
tures showa part of the triangulation for whi
h there is
onsiderable di�eren
e between SR andISR.Again ISR
ollapses thin polygons that SR does not
ollapse. The se
ond table inFigure 6.2 shows that in this
ase the average deviation of a
hain in both s
hemesdoes not di�er by mu
h. The maximum deviation in ISR is always less than twi
ethe pixel width. Here also the average number of links per
hain is almost the samefor the output of SR and ISR.6.3 Geographi
 DataWe ran both s
hemes on several geographi
 maps of
ountries and
ities whi
h are less
luttered than the examples above. The experiments for this type of data typi
allyshow little di�eren
e between the SR and ISR results. Figure 6.3 depi
ts the resultfor a map of the USA. The data
ontains 486 segments interse
ting only at endpoints.The se
ond table in Figure 6.3 shows the di�eren
e of using SR and ISR. In most

6.3. Geographi
 Data 30of the tests, there are o

asional
ases in whi
h the distan
e between a vertex and anon-in
ident segment is shorter than half the size of a pixel. Thus there are di�eren
esbetween the SR and the ISR output. These di�eren
es are however minor. In theISR output the maximum deviation is no more than twi
e that of the SR output.The average deviation in both the SR and ISR output is similar.

6.3. Geographi
 Data 31

Input SR output ISR output
Input zoom in SR output zoom in ISR output zoom ininkd nkd nfhp tt1 1 613477 100% = 213.2 s2 2 513551 87.2%3 3 474997 83.6%4 4 478749 84%5 5 479507 84.3%6 6 463025 83.4%7 7 456882 83%8 8 456269 84%9 9 455334 84.8%10 10 456196 86.3%Di�erent number of kd-treesisr srps nhp md ad mnv anv mdvs n
vs md ad mnv anv mdvs n
vs0.125 8488 1.01 0.19 120 90.96 0.08 0 0.09 0.09 106 87.95 0.04 170.25 8261 1.5 0.41 124 94.15 0.15 0 0.17 0.17 112 89.16 0.06 580.5 7711 1.68 0.67 135 97.9 0.28 0 0.35 0.35 126 91.66 0.08 1351 6003 1.58 0.99 154 101.85 0.55 0 0.71 0.71 153 95.99 0.07 3282 2538 1.51 1.41 101 72.9 1.26 0 1.41 1.41 101 72.87 0.88 33 1143 2.12 1.84 67 49.1 2.12 0 2.12 1.84 67 49.09 1.34 14 673 2.82 2.7 51 37.56 2.82 0 2.82 2.7 51 37.56 2.82 05 439 3.53 3.32 41 30.31 3.53 0 3.53 3.32 41 30.3 2.23 110 120 7.07 6.6 21 15.58 7.07 0 7.07 6.6 21 15.58 7.07 0ISR and SR
omparison (n = 200)Figure 6.1: Congestion data

6.3. Geographi
 Data 32

Input points Input triangulation SR output ISR output
Input zoom in SR output zoom in ISR output zoom ininkd nkd nfhp tt1 1 4872 100% = 15.4 s2 2 4789 103.2%3 3 4852 102.6%4 4 4597 101.9%5 5 4487 102.6%6 6 4349 103.2%7 7 4349 102.6%8 8 4399 102.6%9 9 4419 103.2%10 10 4358 102.6%Di�erent number of kd-treesisr srps nhp md ad mnv anv mdvs n
vs md ad mnv anv mdvs n
vs2 306 2.231 0.825 6 2.219 1.223 0 1.341 0.812 6 2.198 0.318 95 300 9.804 2.691 7 2.625 3.14 0 3.494 2.442 6 2.48 0.741 5010 249 17.194 5.18 9 2.761 5.368 0 7.028 4.847 7 2.637 1.414 4515 195 22.088 6.985 10 2.75 9.486 0 10.559 6.512 10 2.622 2.631 6720 162 32.207 7.614 9 2.621 11.767 0 13.914 7.19 8 2.532 4.85 45ISR and SR
omparisonFigure 6.2: Triangulation data

6.3. Geographi
 Data 33
Input SR output ISR output

Input zoom in SR output zoom in ISR output zoom ininkd nkd nfhp tt1 1 293 100% = 9.11 s2 2 306 102%3 3 302 103.1%4 4 284 103.8%5 5 293 105%6 6 275 106%7 7 260 106.8%8 6 269 106.1%9 8 272 107.9%10 8 253 107.9%Di�erent number of kd-treesisr srps nhp md ad mnv anv mdvs n
vs md ad mnv anv mdvs n
vs0.125 486 0.097 0.088 4 2.098 0.111 0 0.088 0.088 4 2.096 0.045 10.25 485 0.353 0.177 5 2.113 0.196 0 0.176 0.176 5 2.107 0.039 20.5 480 0.392 0.353 4 2.104 0.377 0 0.353 0.353 4 2.100 0.039 21 475 1.414 0.715 5 2.137 0.569 0 0.707 0.707 5 2.115 0.196 32 432 2.236 1.063 5 2.137 1.264 0 1.414 1.043 5 2.102 0.392 93 379 3.807 1.353 5 2.037 2.121 0 2.121 1.336 5 2.020 1.341 24 338 3.333 1.764 6 1.991 2.828 0 2.828 1.758 5 1.983 1.264 25 299 4.735 2.124 5 1.897 3.535 0 3.535 2.110 4 1.884 1.581 310 177 10.606 3.732 5 1.615 7.071 0 7.071 3.696 5 1.602 7.071 0ISR and SR
omparisonFigure 6.3: Geographi
 data

6.3. Geographi
 Data 34

Part IIControlled Perturbation of LineSegments

35

Chapter 7Controlled Perturbation
Controlled Perturbation is another kind of �nite-pre
ision approximation te
hnique.More pre
isely, it is a framework whose details need to be worked out for di�erentkinds of obje
ts. The name of this s
heme is Controlled Perturbation sin
e it is
ontrolled in two aspe
ts. First, by determining the size of the perturbation, we
ontrol the running time of the perturbation s
heme and set a tradeo� between themagnitude of the perturbation and the e�
ien
y of the
omputation. Se
ond, afterea
h obje
t is pro
essed, the perturbation algorithm guarantees that it indu
es nodegenera
ies. Generally, the s
heme pro
eeds as follows.Let S = fs1; s2; : : : ; sng be the set of input obje
ts. Ea
h obje
t s 2 S is inserted inits turn. Possibly, ea
h s 2 S is further divided into m � 1 parts, Q(s) = q1; q2 � � � qm,ordered in a spe
i�
 order determined by the algorithm. Then ea
h part q 2 Q(s)is inserted in its turn. In ea
h insertion we
he
k if q indu
es degenera
ies with thealready inserted obje
ts. (In what follows �an obje
t indu
es degenera
ies� alwaysrefers to �with the already inserted obje
ts�.) If not, it is inserted. Otherwise we haveto perturb q. We next des
ribe how to do so in our algorithm (other algorithms ofthis s
heme apply similar ideas). We de�ne the set Q(s) su
h that ea
h q 2 Q(s) hasa unique vertex, vq, whi
h is perturbed if ne
essary in order to remove degenera
ies.We perturb vq in the following way. We de�ne a dis
 C,
entered at vq with a radiusr. r is
omputed su
h that when pi
king up a point p randomly inside C, we areguaranteed that with a reasonable probability, ' (for example 12), if we pla
e vq atp then the obje
t q atta
hed to vq will not indu
e any degenera
ies. We pi
k up apla
ement for vq randomly inside C and
he
k if any degenera
y is indu
ed. If not, q isinserted. Otherwise we
ontinue
hoosing pla
ements for vq in the same way until we�nd a degenera
y-free pla
ement. Sin
e the probability to indu
e no degenera
ies is', we �nd a degenera
y-free perturbation after 1' trials on the average. The sele
tionof the parameter ' is a tradeo� between the size of the perturbation and the e�
ien
yof the
omputation. The larger ' is, the bigger the perturbation magnitude is, butthe probability of �nding degenerate-free pla
ement is greater, thus less trials on theaverage should su�
e. We set ' = 12 in our implementation.36

37Related Work. Halperin and Shelton [25℄ were the �rst to propose a ControlledPerturbation algorithm. Their goal was the elimination of degenera
ies indu
ed by
olle
tions of spheres in IR3. They des
ribed a software pa
kage for
omputing andmanipulating the subdivision of a sphere and for
omputing the boundary surfa
e ofthe union of spheres. Their implementation was a
omponent in a pa
kage aimed tosupport geometri
 queries on mole
ular models. The ex
use for the perturbation isthat the model is approximate to begin with. The time
omplexity of their methodis linear in the number of spheres in the input.It was followed by Raab in [33, 34℄ who proposed a Controlled Perturbation algo-rithm to eliminate degenera
ies indu
ed by polyhedral surfa
es in IR3. The motivationwas to
reate a robust model for swept volume appli
ations. A swept volume is de�nedas the geometri
 spa
e o

upied by an obje
t moving along a traje
tory in a giventime interval. Her swept volume appli
ation
omputes the boundary of a
olle
tionof three-dimensional polyhedra and employs verti
al de
omposition as its �nal step.

Chapter 8Controlled Perturbation of LineSegments
8.1 Introdu
tionIn this
hapter, we propose a Controlled Perturbation algorithm for arrangement ofline segments in IR2 (CPLS for short). CPLS follows the framework des
ribed inChapter 7. While this framework has been applied for
olle
tion of spheres [25℄ andpolyhedral surfa
es [34℄, we propose a novel s
heme of the framework, for arrange-ments of line segments in IR2.The idea of CPLS is to perturb the above arrangement into a robust representationfor further manipulation. This is done by eliminating degenera
ies indu
ed in thearrangement. Degenera
ies are eliminated by slightly perturbing some of the linesegments indu
ing them,
reating degenera
y-free data.8.2 Preliminaries and Key IdeasWe use the following notation throughout the
hapter. S = fs1; s2; : : : ; sng is the setof input line segments ordered arbitrarily. Si denotes the set of the �rst i segmentsof S. For ea
h si 2 S we denote its endpoints by pi and qi (we relate to pi as the �rstendpoint, and to qi as the se
ond one; this
hoi
e is arbitrary). As we show later, theperturbation of ea
h s 2 S has two phases. In the �rst one pi is possibly perturbed.We denote by p0i the result of the �rst phase on pi, either perturbed or not. We denoteby s0i the segment p0iqi. In the se
ond phase, qi is possibly perturbed. We denote byq0i the result of the se
ond phase on qi, either perturbed or not. We denote by s00i thesegment p0iq0i. s00i is the CPLS output for si. Let S 00i = fs001; s002 : : : s00i g and A = S 00n.Then A is the output of CPLS, namely the set of the output segments produ
ed byCPLS. 38

8.2. Preliminaries and Key Ideas 39The goal of CPLS is to eliminate degenera
ies indu
ed in arrangements of linesegments so that the algorithms that manipulate the input further will be robust. Inorder to de�ne a degenera
y formally, we use a resolution parameter, "0 > 0, whi
his another input of the algorithm. Two features are degenerate if they are not "0-away from ea
h other (i.e, the distan
e between them is less than "0). We need touse other two arti�
ial resolution parameters whi
h
annot be smaller than "0. Theyare denoted by �1 and �2. The idea is that when perturbing a segment si, �1 is theresolution parameter of p0i (more pre
isely, we demand that a dis

entered at p0i witha radius �1 is empty) and �2 is the resolution parameter of q0i and s00i (more pre
isely,we demand that a dis

entered at q0i with a radius �2 is empty and that the distan
ebetween s00i and any vertex indu
ed by S 00i�1 is at least �2). We need two di�erentresolution parameters for the endpoints sin
e as we show below, the work on p0i isdi�erent from the work on q0i. They also di�er from "0 sin
e "0 is used for a
ertaindegenera
y whi
h must have smaller perturbation magnitude than �1 and �2 � seeAppendix A.2.4. We dis
uss the exa
t relations among the resolution parameters inSe
tion 8.7 and Appendix A.2.4.In order to eliminate degenera
ies we use the following perturbation pro
ess. Weorder the line segments arbitrarily and possibly perturb ea
h one in its turn. Forea
h line segment si, we possibly perturb pi and qi several times. If pi indu
es degen-era
ies, it is perturbed in order to �nd a pla
ement in whi
h it does not indu
e anydegenera
y. The perturbation of qi is di�erent sin
e its goal is not only to eliminatethe degenera
ies indu
ed by qi, but also to eliminate the ones indu
ed by the wholes0i. If qi or s0i indu
e degenera
ies, we perturb qi until all degenera
ies are eliminated.On
e the work on an endpoint is done, its pla
ement is determined and it is neverperturbed again. Ea
h endpoint is perturbed inside a dis
 whose
enter is the orig-inal endpoint and whose radius is
alled a perturbation radius. Sin
e the goals ofthe perturbations of pi and qi are di�erent, di�erent perturbation radii are used forea
h one. We denote the perturbation radii by Æ1 and Æ2 for pi and qi respe
tively.The radii are determined su
h that the probability that a pla
ement of an endpointindu
es a degenera
y is no more than 12 . We
hoose a pla
ement for the endpointat random (inside the dis
) until no degenera
y is indu
ed. Sin
e the probability toindu
e degenera
ies after the perturbation is no more than 12 , after no more than 2perturbations on the average we �nd a degenerate-free pla
ement. The determinationof the values of Æ1, Æ2, �1 and �2 are te
hni
al (and tedious) and hen
e postponed toAppendix A.Previous Controlled Perturbation algorithms [25, 34℄ applied optimization te
h-niques in order to make the work and the out
ome of the algorithm more e�
ient. Weimplemented these optimizations and des
ribe how we apply them in our algorithm� see Se
tion 8.5.A
riti
al de
ision when designing a geometri
 algorithm is whether to use �nite-pre
ision arithmeti
 or exa
t arithmeti
. We des
ribe the advantages and disad-vantages of using ea
h one and explain why we
hoose to implement CPLS with�nite-pre
ision arithmeti
. Other Controlled Perturbation algorithms [25, 34℄ used

8.2. Preliminaries and Key Ideas 40�nite-pre
ision arithmeti
 as well.Throughout the algorithm we use the following atomi
 operations (we assume thatea
h operation takes O(1) time):� Finding an interse
tion between two line segments.� Finding the distan
e between a segment and a point.� Pi
king up a random point inside a dis
.We expe
t the perturbation radii and the resolution parameters to be mu
h smallerthan the length of the input line segments. Otherwise CPLS is not a

eptable for theinput sin
e line segments may be perturbed signi�
antly. In that
ase, the user shouldrefrain from using CPLS and resort to other �xed-pre
ision approximation s
hemes.We next give a formal de�nition of this issue.De�nition 8.1 CPLS is
onsidered �-a

eptable for an input set S of segments andfor a parameter � if and only if Æ=L � � where Æ is the largest perturbation radiusand L is the length of the longest input line segment in S.Note that the biggest perturbation radius is bigger than any resolution parameter(see Equation A.6 and Theorem A.4). Thus if the perturbation is �-a

eptable,then for ea
h resolution parameter ", "=L � � holds. We get that CPLS is �-a

eptable if any resolution parameter and perturbation radius is at least 1� timessmaller than the longest input segment. Thus the perturbation magnitudes will berelatively small, provided that � is small enough. We arbitrarily
hoose � = 110 in ourimplementation. Our experiments have shown that with a reasonable input resolutionparameter and input that is not extremely
ongested, CPLS is found �-a

eptable.The above de�nition is
ru
ial for both the CPLS algorithm and its analysis, as weshow below.Dis
ussion: CPLS vs. SR and ISR. SR (see Chapter 2), as well as ISR (seeChapter 3), have basi
ally the same goal as CPLS, but the results of SR and ISR
ompared with CPLS are quite di�erent. Both make the verti
es of the originalarrangement well separated. In SR and ISR all verti
es inside a
ertain pixel are
ollapsed to the
enter of it, possibly introdu
ing new degenera
ies. The situation isdi�erent in CPLS. Here verti
es of the original arrangement are perturbed to maketheir distan
e not less than a given threshold. In that sense, the results are somewhatopposite to SR and ISR. An advantage of SR and ISR over CPLS is that they preserve
ertain topologi
al features while CPLS does not. On the other hand, an advantage ofCPLS over SR and ISR is that the output type is maintained (line segments) while SRand ISR transform segments into polygonal
hains. While SR has the property that anoutput
hain is very
lose to its original segment this is not the
ase for ISR and CPLS

8.3. The Degenera
ies 41where the distan
e between an original segment and its output depends on the inputsegments and the parameters of the algorithm. In SR the distan
e between a vertexand a non-in
ident edge
an be extremely small indu
ing potential degenera
ies. Thisis not the
ase for ISR and CPLS. While ISR and SR
an maintain planar subdivisions,CPLS is
onstrained to work with segments. The above dis
ussion implies that CPLSprovides another s
heme to
reate a robust approximation of an arrangement of linesegments in IR2 beyond the well known SR and our ISR. Ea
h s
heme may be suitablein di�erent situations.8.3 The Degenera
iesRe
all that a vertex of an arrangement of line segments is either an endpoint, e, or aninterse
tion point i of two segments. Let s be a segment. Three types of degenera
iesare possible in an arrangement of line segments:D1 : endpoint - line segment It takes pla
e when the distan
e between e ands (where e is not an endpoint of s) is smaller than a given threshold.D2 : interse
tion - line segment It takes pla
e when the distan
e between i ands (where s is not one of the segments that indu
e i) is smaller than a given threshold.D3 : two endpoints It takes pla
e when s is short enough su
h thatits endpoints indu
e degenera
ies.8.4 AlgorithmAs we des
ribed earlier, ea
h line segment is pro
essed in two phases, one for ea
hendpoint. Next we explain the details of ea
h phase. For brevity we omit the spe
ial
ase of s1 whi
h involves only perturbations due to degenera
ies of type D3 in whi
honly q1 might be perturbed su
h that it is su�
iently far from p01 = p1.First phase. In this phase pi is possibly perturbed. The possible degenera
ies inthis
ase are of type D1. We �rst
he
k whether no s00j 2 S 00i�1 indu
es a degenera
ywith pi. If so, we set p0i = pi. Otherwise we have to perturb pi. The perturbationis done as follows. We perturb pi randomly in a dis

entered at pi with a radiusÆ1, giving p0i. We
he
k if p0i indu
es degenera
ies of type D1. If not, the work onp0i is done. Otherwise, we
ontinue
hoosing pla
ements at random inside the samedis

entered at pi until we �nd a pla
ement for whi
h p0i indu
es no degenera
ies.Re
all that Æ1, the radius of the dis
, is determined su
h that the probability that apla
ement of an endpoint indu
es degenera
ies is no more than 12 . In Appendix A weshow that this holds for any Æ1 � 8mR�2� , where m is the maximum number of linesegments that were inserted into A by the time that a
ertain s 2 S is inserted, whi
h
an be very
lose to s or interse
t it (we des
ribe how to estimate m in Se
tion 8.6),

8.5. Optimizations 42R is the ratio �1�2 (the size of �1 is determined in this way, namely we set �1 to be R�2;we give the details in Se
tion 8.7), and �2 is the resolution parameter for the se
ondphase (see Theorem A.4).Se
ond phase. In this phase, s00i is inserted into A. Sin
e the lo
ation of p0i isalready determined, only qi may be perturbed su
h that none of the following typesof degenera
ies arise:D3 between p0i and q0i.For ea
h s00j 2 S 00i�1:D1 indu
ed by either p0j or q0j and s00i .D1 indu
ed by q0i and s00j .For ea
h s00j ; s00k 2 S 00i�1; j 6= k (the order of j and k is not important):if s00j interse
ts s00k, D2 indu
ed by this interse
tion and s00i .For ea
h s00j ; s00k 2 S 00i�1; j 6= k (the order of j and k is important):if s00j interse
ts s00i , D2 indu
ed by this interse
tion and s00k.We
he
k if s0i indu
es degenera
ies. If not, q0i = qi and s0i is inserted into A. Oth-erwise, we perturb qi inside a dis

entered at qi with a radius Æ2 in the same manneras done for pi above. Re
all that Æ2 is determined su
h that the probability that apla
ement of an endpoint indu
es a degenera
y is no more than 12 . In Appendix A weshow that this holds for any Æ2 � 4�2� (m(m+3)(L+ 8mR�2�)�2pR2�1 + 2(m + 1)), where m, R and�2 are de�ned as in the �rst phase and L is the length of the largest line segment inS. Figure 8.1 depi
ts two results of Controlled Perturbation of an arrangement offour line segments. Noti
e that both degenera
ies of types D1 and D2 are eliminated,but the topology of the original arrangement may not be preserved.The
omplexity of the pro
edure is analyzed in Se
tions 8.5, 8.6, 8.7 and in Ap-pendix A, and is summarized in Theorem 8.8.
8.5 OptimizationsWe des
ribe two typi
al optimization te
hniques to improve the quality of the outputand the performan
e of the algorithm. These te
hniques were previously applied inthe
ontext of Controlled Perturbation [25, 34℄. The �rst one deals with a usefulte
hnique to �nd a group of
andidate segments for the degenera
ies tests. By thatwe improve the performan
e of CPLS sin
e we prevent many possibly redundant tests

8.5. Optimizations 43
(a) (b) (
)Figure 8.1: An arrangement of line segments (a) and two di�erent results of CPLS(b),(
)of degenera
ies. The se
ond one deals with redu
ing the perturbation magnitudes.By a
hieving smaller perturbations we improve the quality of the output sin
e theoutput line segments are
loser to the original ones. Our CPLS implementation usesthese te
hniques and we base our analysis on them.8.5.1 Tiling the PlaneLet si 2 S be a segment that is
urrently perturbed. We need to �nd the segmentsthat indu
e degenera
ies with si. We
ould
he
k all the segments in Si�1 for thatbut in pra
ti
e we
an do better. Let U(si) � Si�1 be the set of segments that mayindu
e degenera
ies with si, after possibly perturbing the segments. Then it su�
esto work only with segments of U(si). We next des
ribe a way to �nd a superset ofU(si), whi
h may still be mu
h smaller than Si�1.Let � be the smallest magnitude that satis�es the following
ondition: if the dis-tan
e between two line segments is equal or greater than � , then there is no possibilitythat a degenera
y whi
h is a result of both is indu
ed. In Se
tion 8.6 we show that� = 2max(Æ1; Æ2) + �1. We use the following de�nition throughout this se
tion.De�nition 8.2 Let o1 and o2 be two geometri
 obje
ts and d(o1; o2) be the minimaldistan
e between them. We say that two obje
ts are �-
lose if d(o1; o2) < �.Let V (si) = fs 2 Sjsi and s are � -
lose}. The following
learly holds:Observation 8.3 U(si) � V (si).Re
all that L is the maximum length of a segment in S. We tile the plane witha grid of squares, H, whose edge length is L su
h that the point (0; 0) is a vertexof the tiling. We keep the squares that are used (as des
ribed below) in a balan
ed

8.5. Optimizations 44binary tree. Let Hsi � H be the squares that are interse
ted by si or are � -
lose tosi. Let S(Hsi) � Si�1 be the set of segments that interse
t Hsi or are � -
lose to Hsi.Obviously ea
h segment s 2 V (si) interse
ts at least one square h 2 Hsi or is � -
loseto it but possibly other segments that are not � -
lose to s may also interse
t Hsi. Weget the following.Observation 8.4 V (si) � S(Hsi).From observations 8.3 and 8.4 we get that U(si) � S(Hsi). Thus the tests for de-genera
ies with si
an be restri
ted to the segments of S(Hsi). Now the problemis restri
ted to �nding S(Hsi). We des
ribe next how we do that. Then the workfor �nding S(Hsi) for all the segments is done as a prepro
essing step when all theparameters ne
essary for
omputing the resolution parameters are determined (morepre
isely after the work des
ribed in Se
tions 8.6 and 8.7). During the perturbationpro
ess, ea
h segment si points to S(Hsi) and we use the segments of S(Hsi), afterbeing possibly perturbed, when testing for degenera
ies with Si.Noti
e that if CPLS is �-a

eptable then � � 3�L. Then, if CPLS is �-a

eptable,for ea
h � we
an bound the number of squares whi
h si interse
ts or that are � -
loseto si by a
onstant (re
all that the edge length of the square is L). Re
all that we
hoose � = 110 . With that value the bound of the number of su
h grid squares is 7.It follows that if we denote by w the maximum possible number of segments in ea
hsquare, then jS(Hsi)j = O(w). The algorithm pro
eed as follows. We �rst �nd thesquare h1 2 H that
ontains pi. We insert h1 into Hsi. Then we
he
k ea
h one ofthe 8 neighboring squares of h1 to see if si interse
ts it or if si is � -
lose to it. LetH1 � H be the group of squares that satisfy this
ondition. Ea
h h 2 H1 is insertedinto Hsi. Then we apply the same pro
edure we applied to h1 to ea
h h 2 H1 andpossibly �nd another set H2 � H of squares. Then ea
h h 2 H2 is inserted to Hsi.We do not need to sear
h for neighbors of the squares in H2 sin
e by that time Hsiis
omplete. The reason is that other squares are too far to interse
t or be � -
lose tosi. Obviously we take
are not to insert a square twi
e.For ea
h h 2 H let S(h) be the list of segments interse
ting h or that are � -
loseto h (S(h) is built in
rementally in the pro
ess we des
ribe below). For ea
h h 2 Hbeing inserted to Hsi, we insert ea
h s 2 S(h) to S(Hsi) and insert si to S(h). Weneed to avoid inserting the same segment twi
e, thus the data stru
ture that holdsS(Hsi) is implemented as a balan
ed binary tree. By the time we �nish the abovealgorithm, we are guaranteed that S(Hsi) is
omplete.The work we des
ribed above is for �nding the segments that
an indu
e degen-era
ies with si, thus appropriate when inserting qi. When inserting pi the work is alittle di�erent sin
e we need to �nd the segments that may indu
e degenera
ies withpi. The only di�eren
e is that instead of �nding Hsi, we have to �nd Hpi � H whi
hare the squares that are �-
lose to pi where � = max(Æ1; Æ2) + Æ1 + �1 (the di�eren
efrom � is that we regard the perturbation of a vertex pi and not of an entire segment).The following
laim is similar to the one we des
ribed above for si: If CPLS is �-

8.5. Optimizations 45a

eptable, then jS(Hpi)j = O(w). Thus the asymptoti

omplexity of the pro
eduredoes not
hange.Another important point is to estimate the number of degenera
ies that are testedwhen pro
essing a
ertain line segment. This estimation e�e
ts the
omplexity of thework. For example, when testing degenera
ies with interse
tions of line segments,we expe
t that the number of degenera
ies to be tested would be quadrati
 in thenumber of line segments that might indu
e degenera
ies. We denote this quantity by	(w). We postpone the various estimations of 	(w) to Appendix A.The following theorem summarizes the dis
ussion above.Theorem 8.5 Finding the set of segments that are tested with the
urrently insertedsegment for degenera
ies takes O(n(logn + w logw)) prepro
essing time and O(wn)working storage for all the inserted segments together, where w is the maximum pos-sible number of segments in ea
h square.Proof: Re
all that n is the number of segments in the input. For a segment si,�nding and inserting squares to the squares data stru
ture takes O(logn) time. Sin
eS(h) and S(Hsi) are implemented as a list and a balan
ed binary tree respe
tively,the work on them takes O(w logw) time. Together the total time for n segmentsis O(n(logn + w logw)). There are at most O(n) squares, ea
h holds at most O(w)segments. For ea
h segment inserted we build the tree S(Hsi) with O(w) nodes. Thusthe working storage is O(nw). �
8.5.2 Redu
ing the Perturbation MagnitudeIf a vertex must be perturbed then we would like to move it as little as possible. Sin
eour algorithm does not �nd the smallest perturbation that removes the degenera
ies,whi
h is a very
ompli
ated and time
onsuming task, we take another strategy. Thedis
ussion below is relevant both to the �rst and the se
ond phases. As mentionedin Se
tion 8.4, we
he
k if there is a need to perform perturbations to eliminatedegenera
ies. If there is, we perturb the vertex randomly inside a dis
 whose
enteris the original pla
ement of the vertex in order to �nd a degenera
y-free pla
ement.The size of the dis
 (namely its radius Æ) is su�
iently large so that no more thantwo perturbation trials on the average are needed. Sin
e Æ is an upper bound whi
h�ts extreme
ases of
ongested areas su
h that the various forbidden pla
ements donot overlap, there is a great
han
e that a smaller radius is su�
ient. Thus theoptimization is
arried out as follows. We begin with a smaller radius, r (we
hoose rto be 10 times bigger than the largest resolution parameter, �1 � see Lemma A.2 andthe details following it), making a few random trials in order to �nd a degenera
y-freepla
ement (let
 be a parameter we �x for the number of su
h trials). If we �nd one,we are done. Otherwise we double r, making at most
 additional random trials inside

8.6. Computing � and m 46the larger dis
. We
ontinue this way until we �nd a degenera
y-free pla
ement. Ifwe rea
h a point in whi
h r � Æ, we set r to be Æ, and
ontinue with the same runtil we �nd a degenera
y-free pla
ement. With Æ as the radius, we need at most twotrials on the average to get a degenera
y-free pla
ement. The reason for stopping atthis radius is that we do not want the perturbation to be larger than Æ in order to
onstrain the perturbation magnitude and to satisfy the perturbation analysis. Wenext give an upper bound on the expe
ted running time of this pro
edure.Theorem 8.6 Finding a degenera
y-free pla
ement for any vertex takes O(
	(w) log Æ�1)expe
ted time.Proof: Let � be the largest integer that satis�es 10�2��1 < Æ. Then the series ofthe radius sizes is f10�1; 20�1; : : : ; 10 � 2��1; Æg, where for ea
h one
 trials are
arriedout ex
ept for the last one, in whi
h a small
onstant number of trials are
arriedout. Thus the number of trials is O(
 log Æ�1). Sin
e ea
h trial involves O((w)) tests(re
all that 	(w) is a fun
tion that determines the number of potential degenera
iesthat might be involved as a fun
tion of w), the total expe
ted time is O(
	(w) log Æ�1).�
8.6 Computing � and mThis se
tion des
ribes a prepro
essing step of the perturbation algorithm. We de�ned� as the smallest magnitude su
h that if the distan
e between two line segments isequal or larger than � then there is no possibility that a degenera
y whi
h is a resultof both is indu
ed. We start by evaluating � .Two segments
annot indu
e a degenera
y if after they are perturbed, their dis-tan
e is equal to or greater than some resolution parameter. The largest resolutionparameter we en
ounter is �1 (see Appendix A). We
on
lude that:� = 2max(Æ1; Æ2) + �1:We are now ready to give a formal de�nition of the parameter m whi
h wasmentioned above. We de�ne m to be the maximum number of line segments insertedby the time a
ertain segment s 2 S is inserted, whi
h may indu
e degenera
ies withs, namely the segments that are � -
lose to s. Thus m strongly depends on � whi
hin turn depends on Æ1,Æ2 and �1. On the other hand, a

ording to Appendix A, Æ1,Æ2 and �1 depend on m. Therefore we need to �nd a way to determine the values ofthese parameters.Let � = fÆ1; Æ2g. Sin
e the smaller the value of m is, the smaller the perturbationmagnitudes are, we want to �nd the smallest m su
h that together with the values of

8.7. Approximating the Best Ratio (R) 47� there are indeed no more than m segments whi
h are � -
lose to a
ertain one. Wepropose three approa
hes:I We begin with m = 1,
ompute the values of the parameters in � and
he
k ifthere are at most m = 1 segments � -
lose to any segment s 2 S with theappropriate values of �. If this is the
ase, we set m to 1 and the values of theparameters in � a

ordingly. Otherwise, we in
rement m by one and do theabove again. We
ontinue with this s
heme until there are at most m segments� -
lose to a
ertain segment s 2 S with the appropriate values of �. Obviouslywe are guaranteed to stop when we rea
h m = n. We use the tiling te
hniqueas des
ribed in Se
tion 8.5.1 to �nd the potentially
lose segments.Complexity. We have at the worst
ase n tests for a valid m. From Theorem 8.5ea
h one takes O(n(logn + w logw)) time. Thus the total time
omplexity isO(n2(logn + w logw)). The working storage is O(nw) as in Theorem 8.5.The problem is that this approa
h in
reases the asymptoti
 time
omplexity ofthe algorithm signi�
antly.II We simply let m = n and
al
ulate the values of the parameters in �.Complexity. There is a
onstant number of
omputations. Thus the total timeis O(1).In this way, the parameters of � get upper bound values whi
h are obviouslyvalid for applying CPLS. Nevertheless, this approa
h is problemati
 sin
e al-though we save time, we may get very big perturbation radii whi
h degrade thequality of the output.III We
ompute the parameters of � when m = n. The values we get are valid upperbounds sin
e m is upper-bounded by n. With these values we �nd what is thenumber of segments whi
h are � -
lose to a
ertain segment s 2 S and set it tom. Obviously, this value is an upper bound of the real m be
ause the real m issupposed to be found with parameters whi
h are less than or equal to the oneswe get here. Now we re
al
ulate the values of the parameters in � a

ording tothe newly found m. We use the tiling te
hnique here too.Complexity. The same as the tiling te
hnique sin
e it is applied on
e: O(n(logn+w logw)) time and O(nw) working storage.This approa
h has a mu
h better time
omplexity than the �rst one. Althoughwe
an get larger perturbation radii, our experiments have shown that they arestill relatively small. In that sense, it is better than the se
ond approa
h. Thuswe use this approa
h throughout the arti
le and in our implementation. All the
omplexity
al
ulations are e�e
ted by this approa
h.

8.7. Approximating the Best Ratio (R) 48

lÆ1(R)
Æ2(R)

Figure 8.2: Æ1 and Æ2 as fun
tions of R. The thi
k line is GÆ(R)8.7 Approximating the Best Ratio (R)This se
tion des
ribes yet another prepro
essing step. Thus it is strongly related tothe pro
edure that is des
ribed in Se
tion 8.6. Re
all that R determines the ratioof the two resolution parameters �1 and �2. A ni
e and simple approa
h would beto set R to be the one that makes the maximum of the perturbations radii minimal.For simpli
ity we
hoose R to be an integer. It has to be bigger than 1 so the squareroot in the inequality de�ning Æ2 is real (see Theorem A.4). Noti
e from the valuesof Æ1,Æ2 and �2 in Theorem A.4 that if all the parameters but R are
onstant, Æ1(R)is an in
reasing monotone fun
tion and Æ2(R) is a de
reasing monotone one.Let GÆ(R) = max(Æ1(R); Æ2(R)). We get that GÆ(R) has one lo
al minimum,l (see Figure 8.2). We are interested in �nding l sin
e it is exa
tly the value forwhi
h the maximum between the perturbations radii is minimal. More pre
isely, for
onvenien
e we sear
h only for integers bigger than 1. Let l0 denote the lo
al minimumfor integers. We �nd l0 by applying a variation of binary sear
h with R, while R rangesfrom 1 to some very big value (denoted by M). M
an be the maximum integer, themaximum double, or other
onstants depending on the ar
hite
ture (we
hose it to bethe maximum double). For ea
h R being
he
ked, we make an iteration of approa
hIII in order to �nd the values of the various parameters. When the binary sear
h isover, R is set to l0. The ex
eption is the following
ase. Although M has a very bigvalue, there is a possibility that l0 > M . In that
ase R is set to M . Ex
ept forthis extreme
ase, the deviation from the optimal R is small. The following theoremsummarizes the prepro
essing work of CPLS:Theorem 8.7 The prepro
essing work of CPLS takes O(n logM(logn + w logw))time and O(nw) working storage.

8.8. Dis
ussion: Exa
t Arithmeti
 vs. Finite-Pre
ision Arithmeti
 49Proof: Sin
e we make a binary sear
h over M , ea
h time applying the approa
hIII, the time bound follows. The working storage is not e�e
ted by the sear
h. �
8.8 Dis
ussion: Exa
t Arithmeti
 vs. Finite-Pre
isionArithmeti
An important dis
ussion
on
erning the implementation of geometri
 algorithms iswhether to use �nite-pre
ision or exa
t arithmeti
. By using exa
t arithmeti
, weare guaranteed to get a

urate results. Unfortunately, by using the available exa
tarithmeti
 number types whi
h support square root operation (as CPLS requires),we get a huge time and spa
e overhead. On the other hand, under
ertain assump-tions, CPLS
an use �nite-pre
ision arithmeti
 and still produ
e valid results. Theassumption is that the resolution parameter "0 is
hosen su�
iently big su
h thatdegenera
ies are not indu
ed due to the errors with the ma
hine pre
ision. (We are
urrently investigating this issue to determine the relation between "0 and the ma
hinepre
ision.) We implemented our software with �oating-point arithmeti
. Earlier Con-trolled Perturbation [25, 34℄ also rely on this assumption when using �oating-pointarithmeti
.The idea behind our s
heme is that sin
e the output has a �nite-pre
ision repre-sentation and has no degenera
ies, following manipulations that use �nite-pre
isionarithmeti

an safely use it. The same assumption mentioned above regarding theresolution parameter holds here too, namely that the resolution parameter is
ho-sen su�
iently big so that degenera
ies are not indu
ed due to the errors with thema
hine pre
ision.We next point out another problem whi
h may arise when using �nite-pre
isionarithmeti
. This problem is relevant to the earlier Controlled Perturbation algorithmsas well.Points inside forbidden lo
i. Re
all that the radius of the perturbation dis
 is
hosen su
h that the area of the dis
 is at least twi
e bigger than the sum of the areasof all possible forbidden lo
i (namely, those that indu
e degenera
ies). Thus whenpi
king up a point inside the dis
, we have a probability of at least 12 to be outsidethe forbidden lo
i. If we use �nite-pre
ision arithmeti
, it is not obvious that thisis the
ase. Consider the example in Figure 8.3. The point p has to be perturbedinside the dis
 C where the resolution parameter is ". Sin
e we use �nite-pre
isionarithmeti
, we have a grid of points, K, to pi
k up randomly inside C (the bla
kpoints in Figure 8.3). The forbidden lo
i are indu
ed by the �ve strings
rossing C(denoted by Z). These are the shaded re
tangles in Figure 8.3. Note that the width ofea
h z 2 Z is 2". Let Y = Z \C. Therefore, Y is the forbidden lo
i. The strings arepla
ed su
h that they
over all the points of K. Thus we never get a degenerate-free

8.9. The Main Theorem 50

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���C p

Figure 8.3: A
ase where all the grid points are inside the forbidden lo
ipla
ement. Even if not all the points are inside forbidden lo
i, the probability to geta degenerate-free pla
ement
an be signi�
antly less that 12 , resulting in a hard workto �nd one.From the example in Figure 8.3 we
an
on
lude that if there are m segmentsindu
ing these strings and the perturbation radius is Æ, then Æ � 2m". However, thereal magnitudes of Æ1 and Æ2 are usually mu
h bigger than 2m" and therefore thisexample is not realisti
. Here the pra
ti
al assumption is that " is su�
iently largerthan the ma
hine pre
ision and hen
e situations as the one depi
ted in Figure 8.3 willbe ruled out. Our experiments
on�rm that this problem does not arise.8.9 The Main TheoremWe
on
lude this
hapter by giving the main theorem of CPLS.Theorem 8.8 Given n input line segments and a resolution parameter "0, a validperturbation of the line segments
an be
omputed in O(n logM(logn + w logw) +nw
(log Æ1�1 +w log Æ2�1)) expe
ted time and O(nw) working storage, and the output sizeis n, where the parameters are des
ribed below. M is a big
onstant that
an beexpressed in the number type that is used. w is the maximum number of line segmentsin a grid square as des
ribed in Se
tion 8.5.1.
 is the number of trials done in orderto �nd a degenerate-free lo
us before enlarging the radius of the perturbation dis
.�1 = R�2 is the biggest resolution parameter related to the �rst perturbation phasewhere �2 = r (1+2�)"0Lq1��24 is related to the se
ond perturbation phase, R is simply theratio �1�2 , L is the length of the longest input line segment in the input and � is thea

eptan
e parameter of CPLS. Æ1 and Æ2 are the perturbation radii for the �rst andse
ond verti
es of a line segment respe
tively. The values of Æ1 and Æ2 are
hosen su
h

8.9. The Main Theorem 51that Æ1 � 8mR�2� and Æ2 � 4�2� (m(m+3)(L+ 8mR�2�)�2pR2�1 + 2(m + 1)) where m is the maximumnumber of line segments that were inserted into the output by the time that a
ertains 2 S is inserted, whi
h
an be very
lose to s or interse
t it (See Appendix A formore details on these magnitudes.)Proof: The
omplexities above are the results of summing up the
omplexitiesin Theorems 8.6, 8.7, A.1 and A.3. The output has O(n) size sin
e ea
h input linesegment
ontributes one, possibly perturbed, line segment to the output. �

Chapter 9Implementation Details
The implementation details we des
ribed that are not spe
i�
 to ISR (see Chapter 5)are relevant here too. We next des
ribe more implementation details of the CPLSpa
kage.The main input and the main output of the pa
kage are sets of line segments. TheControlled Perturbation is a framework for several types of algorithms (see Chapter 7).Thus we have designed our pa
kage more generally for Controlled Perturbations inIR2. The main
lass is a general frame to perform Controlled Perturbation algorithms.It is separated from the type of obje
ts that use it. Its knowledge is the ControlledPerturbation framework (see Chapter 7) and the optimizations (see Se
tion 8.5). Inorder to use it, it has to be templated with the information of the obje
t, its perturba-tion details, and as other
lasses of Cgal [6℄, the arithmeti
 number type. The obje
tand its perturbation are separated in order to allow di�erent perturbation s
hemesfor the same type of obje
ts. The advantage of our design is that on
e the ControlledPerturbation frame
lass is implemented, it is suitable for other kinds of obje
ts andperturbations. Using this frame, we built the CPLS pa
kage by templating both linesegments and our perturbation algorithm. Future Controlled Perturbation algorithmsin IR2 will be able to apply the same frame
lass, making the work easier to imple-ment and support. This was exa
tly the
ase when we developed and implementedControlled Perturbation algorithms for both arrangements of polygonal lines and ar-rangements of polygons (whi
h are extensions not des
ribed in this thesis). We used�oating-point arithmeti
 for implementing CPLS.

52

Chapter 10Experimental Results
We present two kinds of experimental results obtained with the CPLS pa
kage. Forea
h one we give quantitative magnitudes that indi
ate the quality of CPLS.We
hoose "0 su
h that the other resolution parameters (�1 and �2) will be suf-�
iently large
ompared with the resolution of the standard double (�oating-point)number type. Noti
e that the only
omputation involving "0 is when we determine�2. We
al
ulated �2 using LEDA's big�oat number type1 [30℄. We observed and
on-�rmed that the
omputed value �2 was the same when using either big�oat or double.The rest of the
omputation was
arried out with the standard ma
hine double.The abbreviations we use in this se
tion are explained in Table 10.1.
10.1 Congestion DataThe input for this example is similar to the one we used in Se
tion 6. The di�eren
e isthat this one has only 100 segments with 2150 interse
tions. The segments' boundingbox lower left
orner is (0; 0) and upper right
orner is (100; 100). For
larity, thepi
tures in Figure 10.1 depi
t a similar example with resolution 1e-15 so that theperturbations are su�
iently large to be visible. In order to show the di�eren
esbetween the input and the output more
learly, the bottom left part of the exampleis zoomed in.Æ1 and Æ2, the number of perturbed verti
es and the a
tual size of the perturbationsare bigger as we use a bigger "0. The a
tual average and maximum perturbationsare mu
h smaller than Æ1 and Æ2. It shows that the optimization that we des
ribe inSe
tion 8.5.2 redu
es the perturbation magnitudes signi�
antly. The average numberof trials to �nd a valid perturbation for a vertex does not ex
eed 3.476.1LEDA's big�oat mimi
s �oating-point representation with user-�xed mantissa length (we set itto 100) and arbitrary length exponent. 53

10.2. Random Data 54Abbreviation Explanationn number of input line segmentsnvp average number of perturbed verti
esap average perturbationmp maximum perturbationant average number of trials to �nd a valid perturbationfor a vertexTable 10.1: Abbreviations10.2 Random DataThe input for this example is a set of line segments whose
oordinates are
hosenrandomly inside a bounding re
tangle whose lower left
orner is (0; 0) and upper right
orner is (1; 1). We divided the experiments into four di�erent numbers of segments:100, 200, 300 and 400. For ea
h one we
reated a random set and tested ea
h oneseveral times, ea
h time with a di�erent resolution parameter. For
larity the pi
turesin Figure 10.2 depi
t a similar example with only 50 segments in a bigger resolutionparameter (2e-9) so that the perturbations are su�
iently large to be visible. In orderto provide a ni
e example with visible degenera
ies elimination, the
oordinates ofthree segments of the input were determined by us instead of being randomly
hosen.The input-zoom-in pi
ture shows a part of the set in whi
h these three line segmentsindu
e degenera
ies with other line segments. The degenera
ies and their elimination,as shown in the output-zoom-in pi
ture, are
learly visible.We tested di�erent number of line segments to see the e�e
t of the density on theresults. When we in
rease the number of line segments, �2 does not
hange while�1, Æ1, Æ2, the number of perturbed verti
es and the a
tual average and maximumperturbations be
ome bigger. As in the previous example, the a
tual average andmaximum perturbations are mu
h smaller than Æ1 and Æ2. The e�e
t of
hanging theresolution parameter is also similar to the previous example. The average number oftrials to �nd a valid perturbation for a vertex does not ex
eed 2.01.

10.2. Random Data 55

Input Output

Input zoom in Output zoom in"0 �1 �2 Æ1 Æ2 nvp ap mp ant1e-18 9.384e-3 1.201e-8 2.365 2.365 149 0.092 0.348 3.4761e-20 2.95e-3 1.201e-9 0.743 0.743 149 0.028 0.115 3.2681e-22 9.315e-4 1.201e-10 0.234 0.234 149 9.114e-3 0.0346 3.2411e-24 2.943e-4 1.201e-11 0.074 0.074 149 2.866e-3 0.011 3.0931e-26 9.308e-5 1.201e-12 0.023 0.023 149 9.019e-4 2.904e-3 3.073Statisti
s (n = 100)Figure 10.1: Congestion data

10.2. Random Data 56

Input Output

Input zoom in Output zoom inn "0 �1 �2 Æ1 Æ2 nvp ap mp ant100 1e-17 5.483e-4 3.798e-9 0.138 0.138 1 3.338e-3 3.338e-3 1100 1e-18 3.021e-4 1.201e-9 0.076 0.076 1 1.986e-3 1.986e-3 1100 1e-19 1.679e-4 3.798e-10 0.042 0.042 1 1.367e-3 1.367e-3 1100 1e-20 9.384e-5 1.201e-10 0.023 0.023 1 7.109e-4 7.109e-4 1200 1e-17 8.401e-4 3.798e-9 0.425 0.425 21 6.009e-3 8.349e-3 1.428200 1e-18 4.46e-4 1.201e-9 0.226 0.226 12 3.493e-3 4.459e-3 1.416200 1e-19 2.428e-4 3.798e-10 0.123 0.123 7 1.657e-3 2.403e-3 1200 1e-20 1.34e-4 1.201e-10 0.067 0.067 5 7.78e-4 1.229e-3 1.2300 1e-17 1.145e-3 3.798e-9 0.871 0.871 50 7.679e-3 0.021 1.74300 1e-18 5.801e-4 1.201e-9 0.441 0.441 29 3.736e-3 5.633e-3 1.31300 1e-19 3.074e-4 3.798e-10 0.234 0.234 16 1.944e-3 2.97e-3 1.062300 1e-20 1.672e-4 1.201e-10 0.127 0.127 9 1.202e-3 1.518e-3 1.222400 1e-17 1.496e-3 3.798e-9 1.52 1.52 114 0.01 0.298 2.01400 1e-18 7.196e-4 1.201e-9 0.731 0.731 60 4.652e-3 7.923e-3 1.683400 1e-19 3.696e-4 3.798e-10 0.375 0.375 39 2.565e-3 6.739e-3 1.384400 1e-20 1.974e-4 1.201e-10 0.2 0.2 19 1.455e-3 1.973e-3 1.421Statisti
sFigure 10.2: Random data

Chapter 11Implementation Details
We implemented both ISR and CPLS with C++, using many
apabilities of Cgal[6℄. Ea
h pa
kage de�nes a C++
lass to work on [38℄. The programmer uses ourpa
kages by
reating instan
es of these
lasses. The implementation is generi
 inthe sense that ea
h
lass is templated with a number type with whi
h the data are
omposed of. The user of our software
hooses whi
h number type to apply with thetemplate me
hanism of the C++ language.The main input of the appli
ations is a set of line segments while the outputs area set of polygonal
hains of segments for ISR and a set of the perturbed segments forCPLS.The user
an
hoose the output format. It
an be either a text �le des
ribing thearrangements in the output or a graphi
 window in whi
h both the input and theoutput are drawn (the graphi
 window is the Leda window [29℄).Ex
ept for Cgal
apabilities that we expli
itly mention, we applied other Cgalelements su
h as geometri
 predi
ates, points, segment, ve
tor and interse
tion oper-ations.We next dis
uss implementation details of ea
h pa
kage.ISR. The ISR pa
kage supports both ISR and SR. It is up to the user to de
idewhi
h one to apply. Generally speaking, the way to
onvert the ISR algorithm toSR is simply to
onstrain the re
ursion depth of the Reroute routine to one (seeChapter 3), meaning that the output polygonal
hains are determined immediatelyby the hot pixels that the original segments interse
t.Sin
e, as presented, ISR and SR must be implemented with an exa
t number type,we implemented the pa
kage with the Leda rational number type [29℄.Re
all that we use the
-oriented kd-trees as our sear
h stru
ture (see Chapter 5)for ISR. As a �rst step for
reating the
-oriented kd-trees, we have to �nd the hotpixels. This is done by applying a plane sweep algorithm [6℄. Re
all that the
-57

58oriented kd-trees are
omposed of several kd-trees. We use the kd-tree pa
kage ofCgal to implement that. The user has the ability to
hoose the number of trees touse.The ISR pa
kage has be
ome a part of Cgal.CPLS. The Controlled Perturbation is a framework for several kinds of algorithms(see Chapter 7). Thus we have designed our pa
kage more generally for ControlledPerturbations in IR2. The main
lass is a general frame to perform Controlled Pertur-bation algorithms. It is separated from the kind of obje
ts that use it. Its knowledgeis the the Controlled Perturbation frame and the optimizations for redu
ing pertur-bation size and the tiling of the plane (see Chapter 8). In order to use it, it hasto be templated with the information of the obje
t, its perturbation details, and asother
lasses of Cgal, the arithmeti
 number type. The obje
t and its perturbationare separated in order to allow di�erent perturbation s
hemes for the same kind ofobje
ts. The advantage of our design is that on
e the Controlled Perturbation frame
lass is implemented, it is suitable for other kinds of obje
ts and perturbations. Usingthis frame, we built the CPLS pa
kage by templating both line segments and our per-turbation algorithm. Future Controlled Perturbation algorithms in IR2 will be able toapply the same frame
lass, making the work easier to implement and support. Thiswas exa
tly the
ase when we developed and implemented Controlled Perturbationalgorithms for both arrangements of polygonal lines and arrangements of polygons(whi
h are beyond the s
ope of this thesis).We used �oating-point arithmeti
 for implementing CPLS.

Chapter 12Con
lusion
We presented two types of �nite-pre
ision approximation te
hniques for arrangementsof segments in the plane. The goal of these te
hniques is to
reate robust data forfurther manipulation of the input. Ea
h te
hnique may be suitable in di�erent situa-tions. We implemented both te
hniques and presented experimental results obtainedwith our implementation.12.1 Iterated Snap RoundingWe presented an augmented Snap Rounding pro
edure whi
h rounds an arbitrarypre
ision arrangement of segments in IR2 with the advantage that ea
h vertex in therounded arrangement is at least half a unit away from any non-in
ident edge. Thenew s
heme makes the rounded arrangement more robust for further manipulationwith limited pre
ision arithmeti
 than the output that the standard Snap Roundingalgorithm produ
es. We have proved that the maximum distan
e between an orig-inal segment and its output
hain is �(n2) in the worst
ase. On the other hand,many examples have demonstrated a very small deviation, no more than a small
on-stant number of pixels. We believe that real-world data behave in this way and notlike pathologi
al examples su
h as the one we used to prove the lower bound. Weimplemented ISR using exa
t arithmeti
.We propose several dire
tions for further resear
h: (1) Can dete
ting all the hotpixels through whi
h an output
hain passes be done more e�
iently? (2) Extendthe s
heme to non-linear
urves. (3) The rounded arrangement
an have at mostO(n2) segments, whereas our algorithm (as well as the known algorithms for SR)may produ
e
(n3) output links. The task here is to devise an output sensitivealgorithm where the output size is the size of the rounded arrangement and not theoverall
omplexity of the
hains. (4) Improve the heuristi
s for
hoosing the dire
tionsof the kd-trees. (5) Find a s
heme that
ontrols both the distan
e of a vertex and anon-in
ident edge and the maximum perturbation magnitude.59

12.2. Controlled Perturbation of Line Segments 6012.2 Controlled Perturbation of Line SegmentsWe presented an algorithm that eliminates degenera
ies from an arrangement of linesegments by perturbing the endpoints of the input segments slightly. Thus makingthe rounded arrangement more robust for further manipulation. We implemented thealgorithm using �oating-point arithmeti
. Our experimental results have generatedrelatively very small perturbations.We have re
ently also developed algorithms for Controlled Perturbations of botharrangements of polygonal lines and arrangements of polygons. We implementedboth of them and a
hieved good results. We intend to report on these ControlledPerturbations algorithms in a separate report.We propose several dire
tions for further resear
h: (1) In our work we assumedthat we are given a su�
iently large " so that
omputing with �oating-point arith-meti

an be
arried out safely. To �ll up the gap here one needs to determine,given the spe
i�
 arithmeti
 pre
ision, what is the smallest " > 0 with whi
h allthe
omputations in CPLS
an be done safely. (2) Re
all that the perturbations ofthe �rst and se
ond endpoints are di�erent. The result is that it is possible thatthe output of CPLS
hanges if we
hange the order of the endpoints of some of theline segments. Another e�e
t on the result of CPLS
an be indu
ed by
hanging theorder of insertion of the line segments in the input sin
e the perturbation of a
ertainline segment depends on the segments that pre
ede it. The task here is to devise away for determining good orders both of the line segments in the input and of theendpoints along the line segments. Good orders would be ones with whi
h there isa
onsiderable probability that the a
tual perturbation magnitudes would be smallerthan the ones a
hieved with random orders. (3) Apply the Controlled Perturbations
heme to other kinds of obje
ts.

Appendix AComputing Æ1 and Æ2In this appendix we derive upper bounds on Æ1 and Æ2, the perturbation radii of the�rst and se
ond endpoints of a line segment respe
tively.We remind the reader of the notation introdu
ed in Chapter 8. The same notationis used throughout the appendix. S = fs1; s2; : : : ; sng are the input line segmentsordered arbitrarily. We denote by si 2 S the segment that is
urrently perturbed.We denote its endpoints by pi and qi (we relate to pi as the �rst endpoint, andto qi as the se
ond one; the order is arbitrary). Let p0i be the result of the �rstphase on pi, either perturbed or not. Let s0i be the segment p0iqi. Let q0i be theresult of the se
ond phase on qi, either perturbed or not. Let s00i be the segmentp0iq0i. Let S 00i = fs001; s002; : : : ; s00i g be the set of the �rst i perturbed segments. LetP 0i = fp01; : : : ; p0i; q01; : : : ; q0ig. Let A = fs00js 2 Sg. As we mentioned in Se
tion 8.2,A is the output of CPLS. We denote by m the maximum number of line segmentsinserted by the time any segment s is inserted, that
an indu
e degenera
ies with s.w is the maximum number of line segments that interse
t or are � -
lose to a gridsquare as des
ribed in Se
tion 8.5.1.A.1 First Phase: Computing Æ1Re
all that Æ1 is the perturbation radius of the �rst endpoint and �1 is the resolutionparameter in this
ase. Ea
h s00 2 S 00i�1 de�nes a forbidden pla
ement for p0i. Thispla
ement is the Minkowski sum of s00 and a dis

entered at the origin with a radius�1. It is easy to show that the maximum area whi
h it
an
ut from the perturbationdis
 is when s00 passes through pi and interse
ts the perturbation dis
 twi
e. Thisarea is bounded by a re
tangle whose area is 2�1�2Æ1 (re
tangle ab
d in Figure A.1).There is an upper bound of m segments de�ning su
h lo
i � see Se
tion 8.6. Thearea of the perturbation dis
 has to be at least twi
e bigger than the sum of the areasof all the forbidden lo
i. Sin
e the perturbation dis
 area is �Æ21 we get:�Æ21 � 8m�1Æ161

A.2. Se
ond Phase: Computing Æ2 62
pi �1Æ1

ba

d

s00Figure A.1: Forbidden lo
i indu
ed by s00 2 S 00i�1
Æ1 � 8m�1� (A.1)Re
all that w is the maximum possible number of segments in ea
h square of thetiling (see Se
tion 8.5.1) and
 is a parameter we �x for the number of perturbationtrials we make before enlarging the perturbation radius (see Se
tion 8.5.2). The nexttheorem summarizes the time
omplexity of the �rst phase.Theorem A.1 The �rst phase for all the segments together takes O(nw
 log Æ1�1) ex-pe
ted time.Proof: Pi
king up a random point inside the dis
 takes O(1) time. Ea
h test in-volves a
omputation of a random point in a dis
 and the distan
e between a segmentand an endpoint (O(1) time). There is an upper bound of O(w) segments to test (seeSe
tion 8.5.1). A

ording to Theorem 8.6, in the worst
ase we have O(
 log Æ1�1) trials,ea
h one
onsists of at most 4w tests. We get that 	 = O(w). Thus the �rst phasefor all the segments together takes O(nw
 log Æ1�1) expe
ted time. �

A.2 Se
ond Phase: Computing Æ2As noted in Se
tion 8.4, there are several di�erent
ases of degenera
ies in the se
ondphase. Ea
h one of them indu
es forbidden lo
i. In Se
tions A.2.1-A.2.4 we des
ribethese
ases. Ea
h test of ea
h of these
ases takes O(1) time. In Se
tion A.2.5 we
ompute the value of Æ2 and the
omplexity of the se
ond phase.

A.2. Se
ond Phase: Computing Æ2 63
qiÆ2

�1

b

d
a

p0i
f �2g

l
h

Figure A.2: Forbidden lo
i of an endpoint/interse
tionA.2.1 Computing Forbidden Lo
i Indu
ed by P 0i�1 and siRe
all that �2 denotes the resolution parameter used in this
ase. Here, s00i must notpenetrate the dis
 of radius �2
entered at the points of P 0i�1. This is demonstratedin Figure A.2, where s0i is the thi
k line whose �rst endpoint, p0i, has already beenperturbed, and f is an already inserted endpoint whi
h must be at least �2 awayfrom s00i in order not to indu
e degenera
ies (we explain later why we pla
e f at theinterse
tion between s0i and the dis
 of radius �1 around p0i). In order to prevent s00ifrom penetrating the dis
 with radius �2 around f , q0i must not be lo
ated inside thewedge dp0i
. It de�nes a trapezoid whi
h bounds the forbidden lo
i (trapezoid ab
din Figure A.2). This trapezoid is maximal when f is lo
ated on s0i and on the dis
with the radius �1 around p0i (this dis
 does not
ontain anything but s0i sin
e pi hasalready been su

essfully perturbed) and when s0i's length is maximal (L+ Æ1, whereL is the length of the longest input segment and Æ1 is the maximum perturbation thatpi
ould have been perturbed in the �rst phase). This explains our
hoi
e where topla
e f .Note that g in Figure A.2 is the pla
e where the segment p0i
 is tangent to the dis

entered at f . We denote by D the maximum area of a trapezoid ab
d (the forbiddenlo
i). Next we
ompute its magnitude.�p0igf � �p0ihb � �p0il
�2jp0igj = jabj=2L + Æ1 � Æ2 = jd
j=2L+ Æ1 + Æ2

A.2. Se
ond Phase: Computing Æ2 64jabj = 2�2(L+ Æ1 � Æ2)jp0igjjd
j = 2�2(L+ Æ1 + Æ2)jp0igjD = (jabj+ jd
j)Æ2D = 4�2Æ2(L+ Æ1)p�21 � �22 (A.2)We need to
oordinate between �1 and �2 in order to
ompute Æ1 and Æ2 in termsof the input parameters. Let R be the ratio �1�2 (we have des
ribed in Se
tion 8.7 howto determine R). Then �1 = R�2 (A.3)If �2 is not mu
h smaller than �1 then in Figure A.2 \dp0i
 is not very small.Thus the size of the trapezoid ab
d, whi
h is the forbidden lo
i in that
ase, may beuna

eptably big. So we expe
t �2 to be mu
h smaller than �1. We also
annot makeit arbitrarily small be
ause the bigger the R is, the bigger �1 would be, resulting ina big perturbation for the �rst endpoint � see Inequality A.1. In Se
tion 8.7 wepropose a way to �nd an R for whi
h the biggest perturbation radius is small.We get that �1 must be greater than �2. Thus the square root in equation A.2 isreal. Sin
e there are 2m possible endpoints for this
ase of degenera
y, the total areaof the forbidden lo
i in this
ase is bounded by:F1 = 8m�2Æ2(L+ Æ1)p�21 � �22 (A.4)A.2.2 Computing Forbidden Lo
i Indu
ed by Interse
tions ofSegments of S 00i�1 and siThe resolution parameter in this
ase is �2 too. The e�e
t of an interse
tion is thesame as the e�e
t of an endpoint as des
ribed in Se
tion A.2.1. The only di�eren
eis that there are at most �m2 � = m(m�1)2 su
h interse
tions. Thus the total size of theforbidden lo
i in this
ase is upper bounded as follows:F2 = 2m(m� 1)�2Æ2(L + Æ1)p�21 � �22 (A.5)

A.2. Se
ond Phase: Computing Æ2 65
qi �2

ba
d

s00
Æ2

Figure A.3: Forbidden lo
i indu
ed by qi and s00 2 S 00i�1A.2.3 Computing Forbidden Lo
i Indu
ed by S 00i�1[fp0ig and qiFirst we dis
uss the forbidden lo
i indu
ed by segments of S 00i�1. This
ase is similarto the �rst phase des
ribed in Se
tion A.1, but this time we want the resolutionparameter to be �2, and the perturbation radius to be Æ2. As shown in Figure A.3,the size of the bounding re
tangle is 2�2 � 2Æ2 = 4�2Æ2. The size of the forbiddenlo
i for p0i is ��22 whi
h is de�nitely smaller than 4�2Æ2. Sin
e we are interested in
omputing an upper bound on the area of the forbidden lo
i, we
an bound it by4�2Æ2 and regard it as it was an above bounding re
tangle in our analysis. Sin
e thereare at most m + 1 obje
ts that may indu
e degenera
ies with qi (m segments fromS 00i�1 and p0i), the total size in this
ase isF3 = 4(m+ 1)�2Æ2 (A.6)A.2.4 A Lower Bound on the Distan
e Between an Interse
-tion of si with an Already Inserted Segment and anAlready Inserted SegmentLet s00j and s00k be two already inserted segments where s00j interse
ts s00i at a pointf . We next argue that if all the degenera
ies above are not indu
ed after possiblyperturbing si giving s00i , then a degenera
y of type D2 involving f and s00k
annot ariseas well. We do so, without loss of generality, by giving a lower bound on the distan
ebetween su
h interse
tion f and s00k; we denote this lower bound by �3. Assume thatthis type of degenera
y involves s00i (perturbed to take
are of the
ases in phase 1and in Se
tions A.2.1, A.2.2 and A.2.3), s00j and s00k. By that we show that this kind

A.2. Se
ond Phase: Computing Æ2 66

 s00js00i s00k ehf

ab dFigure A.4: Minimal distan
e when two segments of S 00i�1 interse
tof degenera
y is eliminated automati
ally after eliminating all the other degenera
iesthat take pla
e in CPLS. Thus we
an ignore this degenera
y when perturbing linesegments although it e�e
ts the magnitudes of the resolution parameters and theperturbation radii.We di�erentiate between two
ases:The �rst one is when s00j and s00k do not interse
t ea
h other. Sin
e ea
h one of theirendpoints is at least �1 far away from the other segment, this also holds for f 2 s00jand s00k. Therefore the lower bound in this
ase is �3 = �1. Thus no degenera
y maybe indu
ed in this
ase.The se
ond
ase is when s00j and s00k interse
t. This
ase is demonstrated in Fig-ure A.4. The two already inserted segments, s00j and s00k for
e s00i not to penetrate thedis
 C,
entered at their interse
tion,
, with a radius �2. Thus f , the interse
tionbetween s00i and s00j , would be
losest to s00k if it is pla
ed on C. Moreover, the smallerthe angle \b
a (denoted by �) is, the smaller �3 is (in Figure A.4 it the size of fh -the distan
e from f to s00j). � is minimal when s00j and s00k have a maximal length belowtheir interse
tion (bounded by L+Æ1+Æ2) and when the distan
e between their lowerendpoints (a and b are the endpoints in the �gure) is minimal, bounded by �2 in this
ase (the resolution parameter for the se
ond endpoint). Under these
onditions, wenext
ompute a lower bound on the length of the segment ef .We get: jef j�2 = �2L+ Æ1 + Æ2

A.2. Se
ond Phase: Computing Æ2 67jef j = �22L+ Æ1 + Æ2We assume that the perturbation is �-a

eptable a

ording to De�nition 8.1, oth-erwise CPLS would not be applied. Let � denote any resolution parameter or per-turbation radius. Then � � �L. Together with a simple trigonometri
 observation inFigure A.4, we get that
os(�2 � �2) = �2=2L + Æ1 + Æ2
os2(�2 � �2) = �224(L + Æ1 + Æ2)2sin2(�2 � �2) = 1� �224(L+ Æ1 + Æ2)2 �1� (�L)24(L+ Æ1 + Æ2)2 � 1� �24sin(�2 � �2) � r1� �24sin(�2 � �2) = �3=jef j�3 � jef jr1� �24�3 � �22q1� �24L + Æ1 + Æ2�3 � �22q1� �24(1 + 2�)LRe
all that we
hoose � = 110 .The next lemma argues that �3 in this
ase is the smallest resolution parameter.Lemma A.2 �3 < �2 < �1Proof: Sin
e we �xed �2 to be smaller than �1, we only have to prove that�3 < �2. Consider Figure A.4: if CPLS is �-a

eptable, then \b
a is su�
iently smallso that �3 (the length of segment fh) is smaller than �2 (the length of segment
e).The
laims follows. �We do not en
ounter other magnitudes of resolution parameters, thus �3 shouldbe the input resolution parameter. Then "0 = �3 and we get that:

A.3. Con
luding Perturbation Radii 68
"0 � �22q1� �24(1 + 2�)LWe need to
ompute the value of �2 in terms of the input parameters. If we
hangethe inequality above to an equation, we obtain an upper bound on �2 whi
h we usebelow. We get that �2 = vuut(1 + 2�)"0Lq1� �24 (A.7)A.2.5 Computing Æ2As in the �rst phase, we want the perturbation dis
 size to be at least twi
e biggerthan the total area of all the forbidden lo
i. Then by using formulas A.4, A.5 andA.6, �Æ22 � 2(F1 + F2 + F3) and we get that:Æ2 � 4�2� (m(m+ 3)(L+ Æ1)p�21 � �22 + 2(m+ 1)) (A.8)The next theorem summarizes the
omplexity of the se
ond phase.Theorem A.3 The se
ond phase for all the segments takes O(nw2
 log Æ2�1) expe
tedtime.Proof: Ea
h test for degenera
ies takes O(1) time. Sin
e we have an upper boundof O(w) segments to
he
k in ea
h perturbation, O(w) tests are done as des
ribed inSe
tions A.2.1 and A.2.3 while O(w2) tests are done as des
ribed in Se
tion A.2.2 .We get that 	(w) = O(w2). A

ording to Theorem 8.6, the se
ond phase for all thesegments together takes O(nw2
 log Æ2�1) expe
ted time. �

A.3 Con
luding Perturbation RadiiWe
on
lude the Appendix with a theorem that summarizes the magnitudes of Æ1 andÆ2.

A.3. Con
luding Perturbation Radii 69Theorem A.4 The magnitudes of Æ1 and Æ2 are:Æ1 � 8mR�2�Æ2 � 4�2� (m(m + 3)(L+ 8mR�2�)�2pR2 � 1 + 2(m+ 1))where �2 = vuut(1 + 2�)"0Lq1� �24Proof: The magnitudes are derived immediately from the Equations and In-equalities A.1, A.3, A.7 and A.8. �

Bibliography[1℄ P. K. Agarwal and M. Sharir. Appli
ations of a new spa
e-partitioning te
hnique.Dis
rete Comput. Geom., 9:11�38, 1993.[2℄ I. J. Balaban. An optimal algorithm for �nding segment interse
tions. In Pro
.11th Annu. ACM Sympos. Comput. Geom., pages 211�219, 1995.[3℄ C. Burnikel, R. Fleis
her, K. Mehlhorn, and S. S
hirra. E�
ient exa
t geometri

omputation made easy. In Pro
. 15th Annu. ACM Sympos. Comput. Geom.,pages 341�350, 1999.[4℄ C. Burnikel, K. Mehlhorn, and S. S
hirra. On degenera
y in geometri

om-putations. In Pro
. 5th ACM-SIAM Sympos. Dis
rete Algorithms, pages 16�23,1994.[5℄ J. Canny, B. R. Donald, and E. K. Ressler. A rational rotation method for robustgeometri
 algorithms. In Pro
. 8th Annu. ACM Sympos. Comput. Geom., pages251�260, 1992.[6℄ The CGAL User Manual, Version 2.4, 2002. www.
gal.org.[7℄ B. Chazelle and H. Edelsbrunner. An optimal algorithm for interse
ting linesegments in the plane. J. ACM, 39(1):1�54, 1992.[8℄ M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld. E�-
ient ray shooting and hidden surfa
e removal. Algortihmi
a, 12:30�53, 1994.[9℄ M. de Berg, M. van Kreveld, M. Overmars, and O. S
hwarzkopf. ComputationalGeometry: Algorithms and Appli
ations. Springer-Verlag, Heidelberg, Germany,1997.[10℄ O. Devillers and F. P. Preparata. A probabilisti
 analysis of the power of arith-meti
 �lters. Dis
rete Comput. Geom., 20:523�547, 1998.[11℄ H. Edelsbrunner and E. P. Mü
ke. Simulation of simpli
ity: A te
hnique to
opewith degenerate
ases in geometri
 algorithms. ACM Trans. Graph., 9(1):66�104,1990.[12℄ I. Z. Emiris, J. F. Canny, and R. Seidel. E�
ient perturbations for handlinggeometri
 degenera
ies. Algorithmi
a, 19(1�2):219�242, Sept. 1997.70

Bibliography 71[13℄ A. Fabri, G. Giezeman, L. Kettner, S. S
hirra, and S. S
hönherr. On the designof CGAL, the Computational Geometry Algorithms Library. Software - Pra
ti
eand Experien
e, 30:1167�1202, 2000.[14℄ A. Fabri, G.-J. Giezeman, L. Kettner, S. S
hirra, and S. S
hönherr. The CGALkernel: A basis for geometri

omputation. In M. C. Lin and D. Mano
ha,editors, Pro
. 1st ACM Workshop on Appl. Comput. Geom., volume 1148 ofLe
ture Notes Comput. S
i., pages 191�202. Springer-Verlag, 1996.[15℄ E. Flato. Robust and e�
ient
onstru
tion of planar Minkowski sums.M.S
. thesis, Dept. Comput. S
i., Tel Aviv University, Tel Aviv, Israel, 2000.http://www.
s.tau.a
.il/��ato/thesis.[16℄ S. Fortune. Vertex-rounding a three-dimensional polyhedral subdivision. Dis
reteComput. Geom., 22(4):593�618, 1999.[17℄ S. Fortune and C. J. van Wyk. Stati
 analysis yields e�
ient exa
t integerarithmeti
 for
omputational geometry. ACM Trans. Graph., 15(3):223�248,July 1996.[18℄ M. Goodri
h, L. J. Guibas, J. Hershberger, and P. Tanenbaum. Snap roundingline segments e�
iently in two and three dimensions. In Pro
. 13th Annu. ACMSympos. Comput. Geom., pages 284�293, 1997.[19℄ D. H. Greene. Integer line segment interse
tion. Unpublished Manus
ript.[20℄ D. H. Greene and F. F. Yao. Finite-resolution
omputational geometry. In Pro
.27th Annu. IEEE Sympos. Found. Comput. S
i., pages 143�152, 1986.[21℄ L. Guibas and D. Marimont. Rounding arrangements dynami
ally. Internat. J.Comput. Geom. Appl., 8:157�176, 1998.[22℄ L. J. Guibas. Implementing geometri
 algorithms robustly. In Pro
. 1st ACMWorkshop on Appl. Comput. Geom., pages 24�28, May 1996.[23℄ D. Halperin. Robust geometri

omputing in motion. In Algorithmi
 and Compu-tational Roboti
s: New Dimensions (WAFR 2000), pages 9�22, 2001. To appearin Int. J. of Roboti
s Resear
h.[24℄ D. Halperin and E. Pa
ker. Iterated snap rounding. Computational Geometry:Theory and Appli
ations, 23(2):209�225, 2002.[25℄ D. Halperin and C. R. Shelton. A perturbation s
heme for spheri
al arrangementswith appli
ation to mole
ular modeling. Comput. Geom. Theory Appl., 10:273�287, 1998.[26℄ I. Hanniel. The design and implementation of planar arrangements of
urves inCGAL. M.S
. thesis, Dept. Comput. S
i., Tel Aviv University, Tel Aviv, Israel,2000. http://www.math.tau.a
.il/�hanniel/thesis.ps.

Bibliography 72[27℄ J. Hobby. Pra
ti
al segment interse
tion with �nite pre
ision output. Comput.Geom. Theory Appl., 13:199�214, 1999.[28℄ M. Karasi
k, D. Lieber, and L. R. Na
kman. E�
ient Delaunay triangulationsusing rational arithmeti
. ACM Trans. Graph., 10(1):71�91, Jan. 1991.[29℄ K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometri
Computing. Cambridge University Press, Cambridge, UK, 2000.[30℄ K. Mehlhorn, S. Näher, C. Uhrig, and M. Seel. The LEDA User Manual, Version4.1. Max-Plan
k-Insitut für Informatik, 66123 Saarbrü
ken, Germany, 2000.[31℄ V. J. Milenkovi
. Veri�able implementations of geometri
 algorithms using �nitepre
ision arithmeti
. Artif. Intell., 37:377�401, 1988.[32℄ V. J. Milenkovi
. Shortest path geometri
 rounding. Algorithmi
a, 27(1):57�86,2000.[33℄ S. Raab. Controlled perturbation for arrangements of polyhe-dral surfa
es with appli
ation to swept volumes. M.S
. thesis,Dept. Comput. S
i., Bar Ilan University, Ramat Gan, Israel, 1999.http://www.math.tau.a
.il/�raab/master_thesis.ps.[34℄ S. Raab. Controlled perturbation of arrangements of polyhedral surfa
es with ap-pli
ation to swept volumes. In Pro
. 15th Annu. ACM Sympos. Comput. Geom.,pages 163�172, 1999.[35℄ S. S
hirra. Robustness and pre
ision issues in geometri

omputation. In J.-R.Sa
k and J. Urrutia, editors, Handbook of Computational Geometry,
hapter 14,pages 597�632. Elsevier S
ien
e Publishers B.V. North-Holland, Amsterdam,2000.[36℄ R. Seidel. The nature and meaning of perturbations in geometri

omputing.Dis
rete Comput. Geom., 19:1�17, 1998.[37℄ J. R. Shew
huk. Adaptive pre
ision �oating-point arithmeti
 and fast robustgeometri
 predi
ates. Dis
rete Comput. Geom., 18(3):305�363, 1997.[38℄ B. Stroustrup. The C++ Programming Language. 3rd edition, 1997.[39℄ K. Sugihara. On �nite-pre
ision representations of geometri
 obje
ts. J. Comput.Syst. S
i., 39:236�247, 1989.[40℄ C. Yap. Towards exa
t geometri

omputation. Comput. Geom. Theory Appl.,7(1):3�23, 1997.[41℄ C. K. Yap. A geometri

onsisten
y theorem for a symboli
 perturbation s
heme.J. Comput. Syst. S
i., 40(1):2�18, 1990.

Bibliography 73[42℄ C. K. Yap. Robust geometri

omputation. In J. E. Goodman and J. O'Rourke,editors, Handbook of Dis
rete and Computational Geometry,
hapter 35, pages653�668. CRC Press LLC, Bo
a Raton, FL, 1997.

