On the Exact Maximum Complexity of Minkowski Sums of Convex Polyhedra

Abstract

We present a tight bound on the exact maximum complexity of Minkowski sums of convex polyhedra in 3. In particular, we prove that the maximum number of facets of the Minkowski sum of two convex polyhedra with m1,m2,…,mk facets respectively is bounded from above by ∑1≤i<jk(2mi − 5)(2mj − 5) +∑1≤i≤k mi + \binom{k}{2}. Given k positive integers m1,m2,…,mk, we describe how to construct k polytopes with corresponding number of facets respectively, such that the number of facets of their Minkowski sum is exactly ∑1≤i<jk(2mi − 5)(2mj − 5) +∑1≤i≤k mi + \binom{k}{2}. When k = 2, for example, the expression above reduces to 4m1m2 −9m1 −9m2 +26. A few pre-constructed polytopes and an interactive program that visualizes them are available at Mink.

The Minkowski sum M11,11 = P11   P’11, where P’11 is P11 rotated 90  about the vertical axis.

On the Exact Maximum Complexity of Minkowski Sums of Convex Polyhedra
Primal
On the Exact Maximum Complexity of Minkowski Sums of Convex Polyhedra
Dual
On the Exact Maximum Complexity of Minkowski Sums of Convex Polyhedra
Dual

Links

Links

  • Efi Fogel, and Dan Halperin, and Christophe Weibel
    On the Exact Maximum Complexity of Minkowski Sums of Convex Polyhedra
    Journal of Discrete and Computational Geometry, Springer New York, 42(4): 654-669, 2009 [link] [bibtex]
    In Proceedings of the 23rd ACM Symposium on Computational Geometry (SoCG), pages 319-326, Gyeongju, South Korea, 2007 [link] [bibtex]
    In Proceedings of the 23rd European Workshop on Computational Geometry (EWCG), pages 38-41, Graz, 2007 [bibtex]

Contacts

Dan Halperin
Efi Fogel

Yair Oz - Webcreator

Contact

Skip to content